研究報告 2018 (KISTEC Annual Research Report, 2018)

【研究開発部】

有望シーズ展開事業

「革新的高信頼性セラミックス創製」プロジェクト	
◆総括······	83
プロジェクトリーダー 多々見純一	
◆ 蛍光体粒子分散型透明サイアロンセラミックスの作製・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
高橋拓実,多々見純一,横内正洋	
◆磁場配向性におよぼす多層グラフェン被覆形態の影響とSi ₃ N ₄ 粒子配向性の定量評価法の検討・・・	90
高橋拓実、多々見純一、矢矧束穂、高橋絵美	
◆メソスケール破壊特性評価法の確立・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	93
高橋拓実、矢矧束穂、飯島志行、多々見純一	
◆光コヒーレンストモグラフィーによる Al ₂ O ₃ セラミックス中の不均質構造観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
高橋拓実,多々見純一	
伊東秀高 (機械・材料部), 田口勇 (電子技術部)	
◆業績·····	100

革新的高信頼性セラミックス創製プロジェクト

プロジェクトリーダー 多々見純一

【基本構想】

本プロジェクトは、平成25年4月より実施した戦略的研究シーズ育成事業の成果をさらに展開し、革新的 な機能と信頼性を有するセラミックス材料を創製し、これを低炭素社会の実現に大きく貢献する分野を中 心に応用展開することを目的としたものである。具体的には、

○高効率高出力 LED 照明の社会実装を推進するための透明蛍光サイアロンセラミックスバルク体の開発
○自動車やスマートグリッドなどで利用される大電流電力変換用パワーモジュールを実現するための高熱
伝導性配向材料の開発

および、これらを含めた各種セラミックスの機械的信頼性の向上するための

○材料のメソスケール破壊特性評価法

○光コヒーレンストモグラフィーによるセラミックス内部構造形成過程のリアルタイム3次元観察法の確 立と広範な実部材への適用に関する研究

を進める。本研究で得られる成果は、エネルギー供給に伴う温室効果ガスの発生の抑制とともに、分散型 エネルギーシステムの推進に大きく貢献すると期待される。

1. 平成 29 年度の研究目的

電池、フィルター、断熱材、風力発電、医療など非常に 広範な分野を支えるセラミックス材料が開発されている が、これらを実用化するためには、機能と機械的信頼性の 両立が重要である。本プロジェクトは、革新的で高い機械 的信頼性を有するセラミックスを創製することを目的と して、プロジェクト1年目となる平成 29 年度は、以下の 各項目を重点項目として研究開発を進めた。

(1) 透明蛍光サイアロンセラミックスバルク体の開発

照明の LED 化は、神奈川県地球温暖化対策計画(2016 年10月改訂)にあるように低炭素社会実現のために有効 な手段であることは言うまでもない。また、2016年5月 に閣議決定された地球温暖化対策計画においても、LED 等の高効率照明を 2030 年までにストックで 100% 普及す ることを目指すこととなっている。現在、白熱電球や蛍光 灯の代替として LED 照明が普及しつつあるが、高出力 LED 照明は普及が十分に進んでいるとはいえない。現在 の最も典型的な LED 照明では、UV、紫色あるいは青色 LED を励起光源として、これに樹脂に分散させたサイア ロン蛍光体からの赤や緑、黄色の発光を併せて白色を実現 している。LED 照明においては、励起光源から発生した 熱や光に起因した樹脂の劣化により光束減少が生じて寿 命となる。特に、高天井用照明や屋外インフラ用照明、ス タジアムなどの投光器、大型プロジェクターなどの高出力 LED 照明の発熱量は大きく樹脂の劣化は顕著であり、蛍 光体関連部材の耐久性の欠如が高出力 LED 照明の社会実 装のボトルネックとなっていた。これを解決するためには、 耐熱性の高いセラミックスを利用することが極めて有効 である。

平成 29 年度は、透明蛍光サイアロンセラミックスバル ク体開発のための冷間静水圧加圧装置を導入した成形条 件の最適化、粉体プロセスの高度化について検討を進め、 緑色および黄色に発光するセラミックスバルク体を作製 した。さらに、組成と焼成条件についても検討を進め、従 来の樹脂複合体よりも高い熱伝導率を有する蛍光体粒子 分散型サイアロンセラミックスの開発も進めた。

			全蛍光体型	粒子分散型	積層型
ľ			各色 単一相サイアロン	蛍光体粒子 1種	全蛍光体積層型
			例:CaAISIN ₃ :Eu ²⁺	送明 # 4 7 P 1 1	
			例:Ca α-SiAlON:Eu ²⁺	セラミックスパルク体 サイアロン (賦活イオン無添加) 蛍光体粒子	粒子分散積層型
			例: β -SIAION: Eu^{2+}	萤光体粒子 多種	
			▶単一相で作製可能	▶ 蛍光体濃度調整による励	▶構成する各層を薄くできる
	*	÷	▶工程数が少なく簡便	起光(青色・UV光)の透過	▶高熱伝導窒化物(例えば
	1	T.	$\geq \alpha$ -SiAlON 、 β -SiAlON 、	率・反射率を制御可能	AINセラミックス)層の導入
	-		CaAlSiN ₃ で実績あり >蛍光体濃度が高い	▶多種類のサイアロン蛍光体 粒子の分散も可能	も可能
		プ	▶励起光(青色・UV光)透	>サイアロン蛍光体粒子の均 の数	▶ドクターブレード成形などのおけたが必要
100 mil		7	◎空では、励起亢透過 のため薄/オス必要をU		の湿式成形が必要
	課	え	のため得くりる必安めり	をうちんケールも含めた焼 結挙動の制御	を同時焼成のための焼結成 縮挙動の制御
	題	性	$\geq \alpha$ -SiAION , β -SiAION ,	>蛍光体粒子の分散形態設	▶左記全蛍光体型と粒子分
		能	CaAISIN ₃ 以外での検討	計による励起光透過率と発	散型と同じ
		Ĕ	▶さらなる透光性の向上	光特性の制御	▶光源を含めた色度調整の ための各層の厚み制御
					the second

図 本研究で研究を進める透明蛍光サイアロンセラミックスバ ルク体の概念図

(2) 低磁場中成形法による高熱伝導配向材料の開発

パワー半導体は、低炭素社会を実現するためのキーとなる電力変換素子として、家電などから HV・EV やパワートレインなどの車両、さらには再生可能エネルギーを利用したスマートグリッドのためのインフラまで多岐にわたり応用が期待されている。特に、自動車関連のパワーデバイスは CO2 削減効果とともに市場も大きい分野である。このような SiC や GaN パワー半導体デバイスを実現する

ためには、それを構成する材料の高度化が克服すべき課題 である。このうち、パワーチップについては多数の企業、 大学、研究機関などにおいて研究開発が活発になされてい る。一方、周辺技術、特に樹脂や絶縁セラミックスなどの 耐熱サーマルマネジメントに必要な高熱伝導材料の開発 は進展していないのが現状である。

平成 29 年度は、これまでに研究してきたグラフェン被 覆粒子を用いた低磁場について移行プロセスの高度化を 目指した研究を行った。中でも、グラフェン被覆粒子はこ のプロセスの根幹を担うところであることから、その微構 造解析を進めた。また、配向材料の FIB-SEM による微構 造観察を行い、配向などの調査等を行う。

図 グラフェン被覆粒子を用いた低磁場配向プロセス

(3) メソスケール破壊特性評価法の確立と高信頼性 材料設計の研究

環境エネルギー分野や安心・安全な社会を支える重要な 各種構造用セラミックスや機能性セラミックスの研究開 発が進められている。これらの材料は社会実装が近づくに つれて、機械的信頼性の向上や耐久性の確保への要求が高 まっているが、現時点で、高信頼性化のための材料設計や その基礎となる破壊現象の理解は十分なされていなかっ た。セラミックスの破壊の素過程はこれを構成する要素の 破壊である。従って、セラミックスの機械的信頼性や耐久 性は、結晶粒子や粒界といった構成要素と同程度のサブ μmから数+μmスケールの領域、すなわち、メソスケー ルでの破壊特性に支配される。しかし、その実測データは なく高信頼性材料の設計と創製の足かせとなっていた。そ こで、これまでに研究を進めてきたマイクロカンチレバー 法によるメソスケール破壊特性評価法の確立を目指した 研究を行う。 平成 29 年度は、まず、これまでの研究で用いてきた単 結晶 Si を用いて、寸法、および、形状を変化させてマイ クロカンチレバー試験片を加工し、この破壊試験を行い、 マイクロカンチレバー試験片の形状と破壊試験条件が測 定される強度や破壊靭性に及ぼす影響を明らかにするこ とを目的とした。また、多孔質 SiC 等にマイクロカンチレ バー法を適用し、従来測定法がなく実測されてこなかった 領域の破壊特性をピンポイントで測定することも行った。

(4)光コヒーレンストモグラフィーによるセラミックスの構造形成過程のリアルタイム3次元観察

セラミックスの各種機能はその構造に強く依存するこ とから、優れた特性と高い信頼性を有するセラミックスを 開発するためには、内部構造の理解と制御に関する知見を 得なければならない。セラミックスの内部構造は、原料粉 体からスラリー、成形体、焼結体に至るまでのプロセス中 に大きく変化することが知られており、その内部構造の形 成過程を観察することが重要である。これまでに、光学顕 微鏡、X線CTなどの手法でこれらの内部構造観察が行わ れてきたが、製造プロセス中に3次元的に刻々と変化する 構造を観察できる手法がなく、内部構造の形成過程に関す る知見は十分ではなかった。光コヒーレンストモグラフィ ー(OCT)は、光の干渉を利用して内部構造の観察が可能 な手法であり、他の内部構造観察手法と比較して、3次元、 非破壊、高速、安価、高分解能と高い優位性を有している。

平成 29 年度は、OCT によるセラミックススラリー、成 形体、焼結体の内部構造の観察手法確立を目指して、まず、 焼結体内部に人工的に導入した欠陥の観察などを行う。

表 光コヒーレンスと他の観察手法の比較

手法	3D	非破壊	深さ	速度	分解能	価格
光学顕微鏡	×	×	×	ビデオレート〇	数μm O	0
共焦点顕微鏡	0	0	×	数min△	数μm O	0
x線cT	0	0	0	数十min~10h×	数μm O	×
超音波CT	0	0	0	ビデオレート〇	約100µm ×	0
FIB-SEM	0	×	×	破壊観察×	<1µm ()	×
ост	0	0	0	ビデオレート〇	数μm O	0

図 メソスケール破壊特性評価法の確立と高信頼性材料設計の研究の概念図

図 光コヒーレンストモグラフィーの概略図

2. 平成 29 年度の研究成果

以下に挙げるのは、平成 29 年度の具体的な研究成果で ある。

(1) 透明蛍光サイアロンセラミックスバルク体の開発

これまでに、組成、焼成条件を変化させてサイアロンセ ラミックスの透過率向上のための検討を行った。その結果、 Y-α SiAION において、ガス圧焼結にて高密度かつ高透過 率の焼成条件を見いだした。これに緑色蛍光体である Eu2+賦活 β-SiAlON 粒子を分散させたところ、添加した β-SiAION の蛍光・励起スペクトルと同様のスペクトルを 有するバルク体を得ることに成功した。また、赤色蛍光体 であるEu2+CaAlSiN3粒子を分散させたセラミックスを実 現するために、Si-Al-O-N 系化合物の探索を進めたところ、 AIN が CaAlSiN3 に対して安定な化合物であることがわか った。AIN セラミックスの透光化を行うために焼結助剤の 種類と量、焼成条件を変化させた実験を行った。その結果、 焼結助剤に由来して析出するアルミネート相の屈折率が AIN に近づけることにより、透光性が向上することが明ら かとなり、透光性発現のための条件をおおむね見いだすこ とができた。AIN は高熱伝導率材料でもあることから、樹 脂やガラスマトリックスと比較したより大きな優位性が 得られるものと期待される。

(2) 低磁場中成形法による高熱伝導配向材料の開発

JST A-STEP ステージIIの支援を受けつつ、共同研究先 と連携して、種粒子の合成条件およびグラフェン被覆条件 を変化させてグラフェン被覆 Si3N4 粒子の調整を行い、各 種条件が複合粒子の性状に及ぼす影響を明らかにした。ま た、FIB-SEM を用いて、配向焼結体の微構造解析を行い、 粗大粒子が配向している様子を明らかにした。

(3) メソスケール破壊特性評価法の確立と高信頼性 材料設計の研究

単結晶 Si をモデル材料として寸法、および、形状を変 化させてマイクロカンチレバー試験片を加工した。その結 果、機械的特性を適切に測定するために必要な、マイクロ カンチレバー試験片の断面の歪度(非対称性)の範囲を明 らかにした。また、多孔質 SiC の粒界強度を測定するため のマイクロカンチレバー試験片を加工した。これは、従来 の寸法と比較して幅、高さ、長さが 1/2~1/3 の極微サイズ である。この試験片を破壊して得られた粒界強度は、セラ ミックスでは実験的に示されてこなかった理論強度と同 等であることを世界ではじめて示した。

(4) 光コヒーレンストモグラフィーによるセラミックスの構造形成過程のリアルタイム3次元観察

粒径 180µm の黒鉛粒子を添加して人工欠陥を導入した アルミナセラミックスを作製し、3次元 OCT 観察を行っ た。また、同じ領域に対して、X線 CT、超音波顕微鏡、 赤外線顕微鏡による観察も行った。その結果、OCT で観 察された人工欠陥の像と、他の手法で観察した結果は一致 し、OCT でセラミックス内部に存在する欠陥を観察でき ることが分かった。また、粒径 50µm の粒子を添加して同 様に検討した結果、深さ 700µm に存在する 50µm 以下の 大きさの欠陥も同定可能であることが明らかとなった。

3. **今後の**予定

以上の平成 29 年度の成果を踏まえ、引き続き革新的高 信頼性セラミックスの研究開発を進めていく。具体的な予 定は以下の通りである。

(1) 透明蛍光サイアロンセラミックスバルク体の開発

これまでに得られた知見を活かして、黄色蛍光体である Eu2+賦活 α-SiAlON 粒子、および、赤色発光サイアロンセ ラミックスバルク体開発の実験を KISTEC 関連部署と連 携して進めていく。また、海老名本部4階実験室に導入し た冷間静水圧加圧装置を活用して、透明化のキーとなる成 形体の高密度・均質化の研究を進める。

(2)低磁場中成形法による高熱伝導配向材料の開発

スラリー調整法の高度化、焼成条件の最適化を通じて、 現行基板と同じ寸法の焼結体での機械的・電気特性の評価 および 140W/mK 以上の熱伝導率を実現する。さらには、 メタライズを行って実施した熱疲労試験を進めて、基板と しての課題の抽出と解決を図る。

(3)メソスケール破壊特性評価法の確立と高信頼性 材料設計の研究

今後は、ユーザーからのリクエストの高い表面窒化処理、 コーティングを対象とした実験を進めていく。さらには、 SiCのメソスケールの破壊特性に関する研究の本質を見極 めるため、および、パワーモジュールとして利用されてお り信頼性に関する情報が必要な単結晶 SiC、および、SiC コーティングを用いて実験を行う。

(4)光コヒーレンストモグラフィーによるセラミッ クスの構造形成過程のリアルタイム3次元観察

光コヒーレンストモグラフィーは、スラリーや成形過程、 焼結過程など、動的に内部構造が変化する様子も観察でき る。この時に OCT で観察される像の意味を、焼結体と同 様に他の手法を駆使しながら明らかにすることで、OCT 観察によるセラミックスの構造形成過程のリアルタイム 3次元観察手法を確立していく。

蛍光体粒子分散型透明サイアロンセラミックスの作製

1. はじめに

新しい照明用光源である白色 LED は、小型照明用途で 我々の生活の中で非常に身近な存在となった。小型 LED 照明の製品寿命は長いため, 今後, 市場規模は縮小方向に いくと予測されているが、 車のヘッドライトや、 スタジア ムやプロジェクションマッピングといった大規模光源に 利用されるような、高出力 LED の需要は近年急増してい る¹⁾。図1(a)(b)は、従来型の白色 LED の構造である ²⁾。白色 LED は、白色光を構成するための蛍光粉体とそれ を固定するための樹脂,および蛍光体を光らせるための励 起光源からなる。白色光を構成する蛍光色の組み合わせは, 三原色(青+赤+緑)と青+黄の2パターンがある。ハイ パワー白色 LED の場合, 蛍光粉体を固定する樹脂の熱伝 導性,耐熱性が低いため,高出力化に伴う発熱で樹脂が劣 化し,デバイスが故障することが問題である。したがって, 樹脂を使わない構造ができれば、ハイパワーLED の長寿 命化が期待できる。樹脂フリー化のためには、図2に示す ように、蛍光体そのものを透明なバルクセラミックスして、 組み合わせれば良い。既報の透明蛍光バルクセラミックス としては、黄色蛍光体として知られる Ce³⁺賦活 YAG セラ ミックスがある³⁾。Ce³⁺賦活 YAG セラミックスは,室温 では優れた蛍光特性をもつものの,温度依存性が強く,高 温になると発光強度が劇的に低下する問題がある⁴⁾。そこ で我々は,機械的強度に優れ,励起光である紫外光や青色 光を照射しても変性しない高耐久性をもつ SiAlON 系蛍光 体に着目した。

SiAION 系蛍光体は、物質材料研究機構(NIMS)で精力 的に研究開発されている窒化物系蛍光体 5-11)であり、温度 上昇による発光強度の低下が少なく,母体となる結晶と賦 活イオンの組み合わせで様々な発光色を実現できる特長 を有する。本研究では、サイアロン (SiAlON) 系蛍光体 を主軸とし,青,青緑,緑,黄,赤の計5種類の蛍光性を 示す透明な SiAION バルクセラミックスの開発に成功した。 一例として, 図 3 に作製した Eu²⁺賦活 Ca-α SiAlON バルク セラミックスをスタックさせたハイパワー青色 LED の発 光の様子を示す。スタックした Eu²⁺賦活 Ca-α SiAlON バル クセラミックスの厚さは 100μm である。本試料は, 乾式 成形と CIP (Cold Isostatic Pressing: 冷間静水圧プレス)成 形によって高密度な成形体を作製し、脱脂後、GPS(Gas pressure sintering: ガス圧焼成) と HIP (Hot Isostatic Pressing:熱間等方圧プレス)焼成を施して作製した。背 面から励起光である青色光を照射すると、Eu²⁺賦活 Ca-α SiAION バルクセラミックスからの黄色蛍光と透過した青 色光から白色が得られた。ただし,本成果は全蛍光体型の

高橋拓実, 多々見純一, 横内正洋

図 3 Eu²⁺賦活 Ca-α SiAION バルクセラミックスを スタックさせたハイパワー青色 LED の発光の様子

透明セラミックスであり、白色 LED 用材料の観点では、 蛍光体濃度の調整に課題があった。そこで本研究では、 SiAION 系蛍光体粒子を透明バルクセラミックス中に分散 させた、新しい形態の透明蛍光バルクセラミックスの開発 を目的とした。

目的とする蛍光体粒子分散型透明バルクセラミックス を実現するためには、①マトリックスの高透明化と②マト リックスと蛍光体粒子の反応性を考慮した材料設計が重 要である。例えば、樹脂よりも熱伝導性と耐熱性に優れる ガラスをマトリックスとし、SiAION 系蛍光体粒子を分散 させる試みもあるが、ガラスは SiAION 系蛍光体と反応し て失活させてしまう問題がある。したがって、SiAION 系 蛍光体粒子を分散させるマトリックスとしては、賦活元素 をドープしていない SiAION セラミックスが最適である。 また、熱伝導性や耐熱性、熱膨張率の観点でも SiAION セ ラミックスの方が優位である。そこで本研究ではまず、マ トリックスの一つである Y-α SiAION バルクセラミックス の高透明化を目指して、GPS 条件と組成の最適化を検討した。さらに、得られた知見を基盤技術として、緑色蛍光体である Eu^{2+} 賦活 β -SiAION 粒子を分散させた Y- α SiAION バルクセラミックス、黄色蛍光体である Eu^{2+} 賦活 Ca- α SiAION 粒子を分散させた透明な Ca- α SiAION バルクセラ ミックスを作製した。

2. 実験と結果

2. 1 Y-α SiAlON バルクセラミックスの透明化

図4は、各 GPS 条件で作製した Y- α SiAlON バルクセラ ミックスの外観写真である。平均粒子径はそれぞれ図中に 示した。また、各試料の全透過率を示した。図4において、 いずれも試料の厚さは 400 μ m、直径は 11mm である。図4 から、平均粒子径が 470nm と最も大きく、1600°C4h で焼 成した試料の透過率が最も高いことがわかった。本結果を もとに、Y_{0。33}: Si_{11-n}Al_{1+n}O_nN_{16-n}において、 n 値を 0.5-2 の間で変化させて試料を作製した。図5は、各試料の外観 写真と全透過率である。図5からわかるように、n 値が小 さいほど透光性は向上することがわかった。

2。2 蛍光体分散型 α-SiAlON バルクセラミック スの作製

図 6 は, Eu²⁺賦活 β-SiAlON 粒子分散型 Y-α SiAlON バル クセラミックスの(a)可視光下の外観写真,(b)紫外光 (365nm)照射下の外観写真と光学顕微鏡写真である。試 料厚さは100µm, 直径は11mmである。図4,5と同様, 可視光下で試料後方の文字が明瞭に視認でき,優れた透明 性を有していることが確認された。また,後方からの紫外 光が緑色に変換されている様子から, 蛍光性を示すことも 分かった。さらに、光学顕微鏡で内部構造を観察すると、 内部に分散した粒子が緑色蛍光していることがわかった。 図 7 (a) に原料として用いた Eu²⁺賦活 β-SiAlON 粉体, (b) に Eu²⁺賦活 β-SiAlON 粒子分散型 Y-α SiAlON バルクセラ ミックスの蛍光・励起スペクトルを示す。図 7 から, Eu²⁺ 賦活 β-SiAlON 粉体と Eu²⁺賦活 β-SiAlON 粒子分散型 Y-α SiAION バルクセラミックスは、いずれも青色光 (440 nm) で励起され、533 nm で緑色蛍光を示しており、同じ蛍光 性を示すことが確認された。

図 8 は、蛍光体濃度を 1, 5vol%で作製した Eu²⁺賦活 β -SiAION 粒子分散型 Y- α SiAION バルクセラミックスの蛍 光・励起スペクトルである。蛍光体濃度 1vol%の場合と比 較して、5vol%では発光強度が増加することがわかった。 さらに、図9にマトリックスのみの Y- α SiAION と、蛍光 体濃度を 1, 5vol%で作製した Eu²⁺賦活 β -SiAION 粒子分散 型 Y- α SiAION バルクセラミックスの(a) 直線透過率と(b) 全透過率を示す。測定試料の厚さは 100µm である。図 9 から、蛍光体濃度増加に伴い、直線透過率は低下する傾向 がみられるものの、全透過率は高水準を維持していること がわかった。図 10 は Eu²⁺賦活 β -SiAION 粒子分散型 Y- α SiAION バルクセラミックスのプラズマエッチング面の SEM 写真である。図 10 より、マトリックスである Y- α SiAION の粒径は約 400 nm であり、蛍光体粒子を添加した 場合でも、微細で均質な微構造を形成していることがわか

図 4 Y-α SiAION バルクセラミックスの外観写真(厚さ 400μm, 直径 11mm)と全透過率

図 5 Y_{0.33}: Si_{11-n}Al_{1+n}O_nN_{16-n}の外観写真(厚さ400µm,直 径 11mm)と全透過率

図 6 Eu²⁺賦活 β-SiAION 粒子分散型 Y-α SiAION バルクセ ラミックスの (a) 可視光下の外観写真, (b) 紫外光 (365nm) 照射下の外観写真と光学顕微鏡写真

った。また,図10中に、一際大きな粒子が観察された。 これは添加した Eu²⁺賦活 β-SiAION 粒子であり、原料の状 態と同一の粒子径が焼結後も維持されていることがわか った。

図 11 は, 黄色蛍光を示す Eu²⁺賦活 Ca-α SiAlON 粒子分 散型透明 Ca-α SiAION バルクセラミックスの(a) 可視光 下の外観写真,(b)紫外光(365nm)照射下の外観写真と 光学顕微鏡写真である。試料厚さは100µm, 直径は11mm である。図 11 から,可視光下で試料後方の文字が明瞭に 視認でき、優れた透明性を有していることが確認された。 また,後方からの紫外光が黄色に変換されている様子から, 蛍光性を示すことも分かった。さらに,光学顕微鏡で内部 構造を観察すると、内部に分散した粒子が黄色く蛍光して いることがわかった。図 12(a) に原料として用いた Eu²⁺ 賦活 Ca-α SiAlON 粉体, (b) に Eu²⁺賦活 Ca-α SiAlON 粒子 分散型透明 Ca-α SiAlON バルクセラミックスの蛍光・励起 スペクトルを示す。図 12 から, Eu²⁺賦活 Ca-α SiAlON 粉 体と Eu²⁺賦活 Ca-α SiAlON 粒子分散型透明 Ca-α SiAlON バ ルクセラミックスは、いずれも青色光(440 nm)で励起さ れ,580nm で黄色蛍光を示しており,同じ蛍光性を示すこ とが確認された。

考察と今後の展望

ー般に、セラミックスを透明化するためには、光の散乱 源となる気孔や粒界、または光を吸収するような領域を極 力低減する必要がある。また、ミー散乱では粒子の大きさ 程度以上の波長の光を散乱することから、マトリックスを 構成している粒子の大きさも重要である。

図4から、平均粒子径が400-500nmと微細ながらも、よ り高温で粒成長させたほうがより高い透過率が得られる ことがわかった。これは、より低温で粒成長が抑制された 場合、粒界ガラス相量が多くなり、ガラス相での吸収の影 響が大きくなるためと考えられる。他方、図5から、n値 が大きくなると透過率は低下することがわかった。n値は、 焼結助剤が多いほど大きくなる。焼結助剤は、焼成中に液 相を形成し、冷却後、粒界ガラス相を形成する。したがっ て、n値が多くなるほど粒界ガラス相による吸収が大きく なり、透過率が低下したと考えられる。

図9において、蛍光体濃度の増加に伴い、直線透過率が 低下したのは、添加した Eu²⁺賦活 β-SiAION 粒子の励起光 吸収が起こるためと考えられる。一方、全透過率は直線透 過率ほど低下していないが、これはマトリックスと蛍光体 粒子の屈折率差が小さく、光散乱が抑制されたことに起因 すると考えられる。

以上のように、本研究では優れた透明性を示しながら、 添加した蛍光体と同様の蛍光性を発現するバルクセラミ ックスの開発に成功した。白色 LED 用の材料という観点 でいえば、試料後方から入射した光は必ずしも直線的に透 過する必要はなく、前方に透過すれば、光源としては十分 である。そういう意味で、本成果物は十分なポテンシャル があるといえる。一方で、透明蛍光 SiAION バルクセラミ ックスは、高出力レーザーやシンチレーターへの応用も期

Eu²*賦活 β-SiAlON 粒子分散型 Y-α SiAlON バルクセラミック スの蛍光・励起スペクトル

図 9 マトリックス単体と蛍光体濃度を 1, 5vol%で作製した Eu²⁺賦活 β-SiAlON 粒子分散型 Y-α SiAlON バルクセラミック スの(a) 直線透過率と(b) 全透過率

600

Wavelength / nm

800

1000

400

200

図 10 Eu²⁺賦活 β-SiAION 粒子分散型 Y-α SiAION バルクセ ラミックスのプラズマエッチング面の SEM 写真

待される。しかしながら、こうした用途では、より優れた 光透過性が求められる。今後は、より精密な微構造制御を 駆使し、さらなる高品質化を目指す。また、白色 LED 用 の光源材料として重要な赤色については、未達である。現 在、赤色蛍光体として主流の Eu²⁺賦活 CaAlSiN₃(カズン) を添加した系でも、蛍光体粒子分散型の透明バルクセラミ ックスを開発中である。本研究の成果がいずれ、多様な形 で実用化されることがあれば、幸甚である。

【参考文献】

1. LED 照明推進協議会, JLEDS Technical Report, 2 (2008)

2. 別所 誠, 清水 恵一, 東芝レビュー, 65 [7], (2010)

3. G. Blasse, A. Bril, App. Phys. Lett., 11 [2], (1967) 53

4. 多田 尚史, 本越 伸二, 本田 能之, 實野 孝久, 藤岡 加奈, 吉田 実, レーザー研究, 38 [5], (2010) 382-385

5. R.J. Xie, M. Mitomo, K. Uheda, F.F. Xu, Y. Akimune, J. Am. Ceram. Soc., 85 (2002) 1229-1234

6. R.J. Xie., N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro,K. Sakuma, J. Phys. Chem., B108 (2004) 12027-1203

7. K. Sakuma, K. Omichi, N. Kimura, M. Ohashi, D. Tanaka, N. Hirosaki, Y. Yamamoto, R.J. Xie, T. Suehiro, Opt. Lett. 29 (2004) 2001-2003

8. R.J. Xie., N. Hirosaki, M. Mitomo, K. Sakuma, N. Kimura, App. Phys. Lett. 89 (2006) 241103

9. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto, Electrochem. Solid-State

Lett., 9, (2006) H22-25

10. K. Uheda, N. Hirosaki, H. Yamamoto, phys. Stat. sol. (a) 203 [11], (2006) 2712-2717

11. N. Hirosaki, R.J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, M. Mitomo, App. Phys. Lett. 86 (2005) 211905

図 12 (a) 原料として用いた Eu²⁺賦活 Ca-α SiAION 粉体と (b) Eu²⁺賦活 Ca-α SiAION 粒子分散型透明 Ca-α SiAION バル クセラミックスの蛍光・励起スペクトル

磁場配向性におよぼす多層グラフェン被覆形態の影響と

Si₃N₄粒子配向性の定量評価法の検討

高橋拓実、多々見純一、矢矧束穂、高橋絵美

1。 はじめに

SiCパワーデバイスの実用化は、低炭素化を達成するための省エネルギー化対策に必要不可欠といわれている ^D。 しかし、実装、放熱、耐熱技術といった周辺技術の高度化 は十分進んでいるとはいえず、特に、サーマルマネジメン トのため放熱基板の革新的性能向上(厚さ方向への高熱伝 導率化)が求められている。Siパワーデバイスにおいて主 流の放熱基板である窒化アルミニウム(AIN)セラミック スは、170~200W/(m・K)の高熱伝導率を有している²⁾。し かしながら、AIN セラミックスは、曲げ強度が 300~ 400MPa、破壊靱性が約 3MPa・m^{1/2}程度であり、機械的信 頼性が低い。SiCパワーデバイスは Si よりも動作温度が高 く、より大きな熱応力が作用することから、優れた機械的 特性をもつ窒化ケイ素(Si₃N₄)セラミックスが絶縁放熱 基板材料として注目されている。

本研究ではこれまで、β-Si₃N₄の熱伝導率が c 軸方向で より高いことに着目し、高磁場かつ回転磁場を用いた結晶 配向技術により、β-Si₃N₄の c 軸を厚さ方向の高度に一軸 配向制御した c 軸配向 Si₃N₄セラミックスの作製に成功し た。さらに、より社会実装性の高いプロセスとして、粒子 複合化技術と磁場配向技術を融合した革新的低磁場配向 技術を開発した。本プロセスでは、巨大磁気異方性をもつ 多層グラフェンを柱状の β-Si₃N₄ 粒子の側部に被覆し、多 層グラフェンに作用する磁化エネルギーの異方性を利用 して β-Si₃N₄粒子の c 軸をネオジム磁石級の低磁場かつ静 磁場で一軸配向制御する。本プロセスでも、同様のc軸配 向 Si₃N₄セラミックスの作製に成功した。しかしながら、 より高度な配向制御を実現するためには、多層グラフェン 被覆した複合粒子の形態制御が重要である。そこで本研究 では、種粒子合成と多層グラフェン被覆条件を変化させ、 多層グラフェンの被覆形態を分析し、配向性のよい被覆条 件の検討を行った。

他方、高熱伝導率化のために、粒子配向性と熱伝導性の 関係を明確にする必要がある。焼結体の配向性を評価する 指標として、XRD パターンから目的とする結晶面のピー ク強度比を求める Lotgering 法が知られているが、Lotgering 法では材料を構成する個々の粒子の方位はわからない。そ こで本研究では、走査型電子顕微鏡を用いた電子後方散乱 回折法(SEM-EBSD)を用い、作製した c 軸配向 Si₃N₄ セ

図1 原料粉体の粒子形態 (A) 合成 β-Si₃N₄種粒子と(B) 多層グラフェン

図 2 機械的粒子複合化処理後の β-Si₃N₄種粒子 (FE-SEM で観察された反射電子像)

ラミックスを構成する個々の粒子の配向性を定量的に評 価することを試みた。

2。 実験と結果

ー例として、図 1 に (1) 1700°C2h で合成した柱状の β-Si₃N₄種粒子と (2) 原料に用いた市販の多層グラフェン の SEM 観察像(二次電子像)を示す。本条件で合成した β-Si₃N₄種粒子の平均アスペクト比は 2.4 であり、長軸方向 ならびに短軸方向の粒子径はそれぞれ 1-2 μ m と 0。5 μ m だ った。合成 β-Si₃N₄種粒子と多層グラフェンをそれぞれ 80vol%と 20vol%となるように秤量し、機械的粒子複合化

図3 異なる条件で調製された多層グラフェン被覆 β-Si₃N₄種粒子の反射電子像

図 4 Si₃N₄セラミックスの EBSD 像(結晶方位マップ)と極点図
 (A) 0.5T 磁場を印加して作製した焼結体(B)磁場印加なしで作製した焼結体

装置へ投入した。複合化処理後の β -Si₃N₄種粒子の反射電 子像を図2に示す。図2では、図1(A)と異なり、粒子 の表面に暗い領域と明るい領域があり、全体的にその中間 のコントラストが見える。これまでの研究成果から、多層 グラフェン被覆した粒子の表面における暗い領域では C が検出されることが明らかとなっており、図2の場合も同 様の結果が得られた。また、中間のコントラストで観察さ れた粒子表面にも C が検出された。以上の結果から、こ れらの領域には多層グラフェンが被覆されていることが わかった。一方、明るい領域は、 β -Si₃N₄粒子の表面が露 出しているものと考えられる。

同様の分析を、異なる種粒子合成と複合化の条件で処理 した多層グラフェン被覆 β-Si₃N₄種粒子の反射電子像を図 3 に示す。図 3 (A)の多層グラフェン被覆 β-Si₃N₄種粒子 では、図 2 と同様に、表面に暗い領域が観察される。一方、 図3(b)でも同様に観察されるものの、図3(A)と比較 すると、暗い領域は少なく、またその大きさも小さく見え た。図3(A)(B)の多層グラフェン被覆 β -Si₃N₄粒子の 配向性を確認するために、これらを種粒子とした成形体を 作製し、1900°C6hで焼成して焼結体とした。得られた焼 結体の配向性を XRDで測定した結果、図3(A)を添加し て作製した焼結体では c 軸配向性が認められたが、図3(B) を添加して作製した焼結体では c 軸配向性が認められな かった。この結果から、機械的粒子複合化処理後の β -Si₃N₄ 粒子の磁場配向性は、被覆された多層グラフェンの量や大 きさといった形態の影響を直接的に受け、被覆量や大きさ が小さい場合、配向性が明確に低下することがわかった。 他方、図3より、機械的粒子複合化処理後の β -Si₃N₄粒子 は粒子径分布が幅広いことがわかった。

図4(A)は0.5T磁場を印加して作製した焼結体、(B)

は磁場印加なしで作製した焼結体の EBSD 像である。図中 に極点図も示した。図4より、磁場を印加して作製した焼 結体では、磁場印加方向に対して垂直な断面において、 β -Si₃N₄ 粒子の c 面 (図中、赤色)が明らかに多く露出し ていることがわかった。また、極点図を見ても、Z 方向(磁 場印加方向と平行方向)に高度に c 軸配向していることが わかった。他方、磁場印加なしで作製した焼結体では配向 性は認められず、構成している β -Si₃N₄ 粒子が様々な方向 を向いていることがわかった。

図4で得られた結果をもとに、さらに定量評価を試みた。 図5は、磁場印加方向に対して垂直な断面において、 β -Si₃N₄粒子の[0001]方向に対する傾斜角度の分布を測定 した結果である。図5より、 β -Si₃N₄粒子は幅広い角度で 傾斜していることがわかった。

3。 考察及び今後の展望

Si₃N₄ セラミックスにおける配向構造形成メカニズムは 次の通りである。まず、配向した種粒子の成長と同時に、 $\alpha \rightarrow \beta$ 相転移で微細な β -Si₃N₄核が生じる。ここで、成長し た種粒子は β -Si₃N₄核の成長方向を制限するテンプレート の役割を果たすため、テンプレートに沿った方向を向いた β -Si₃N₄核が優先的に粒成長し、精緻な c 軸方向を形成し ていく。すなわち、c 軸配向 Si₃N₄ セラミックスを作製す るにあたり、磁場で β -Si₃N₄種粒子を配向させることは必 要不可欠であるが、同時に、焼成過程で十分な緻密化と粒 成長が起こらなければ、最終的に配向構造は形成されない。 図 4 では、低磁場でも良好な配向性を得られることを示し たが、極点図や図 5 をみると、まだ高配向化する余地が残 っている。さらに高配向化させるためには、種粒子をはじ め、プロセス条件の最適化を綿密に行うほかない、

今後は、配向性向上のために、被覆粒子上のグラフェンの結晶性向上を検討する。さらに、これを利用した大型成形体および焼結体の作製を進めたい。なお、現在(5月時点)、本件に関連した内容で、A-stepステージⅡの研究助成の支援を受け、企業と共同研究を行っている。

【参考文献】

1. 鶴田和弘, デンソーテクニカルレビュー, 16、 (2011).
 2. J.H. Harries, JOM, 50 (1998).

メソスケール破壊特性評価法の確立

高橋拓実、矢矧束穂、飯島志行、多々見純一

1. はじめに

環境エネルギー分野や安心・安全な社会を支える重要な 各種構造用セラミックスや機能性セラミックスの研究開 発が進められている。これらの材料は社会実装が近づくに つれて、機械的信頼性の向上や耐久性の確保への要求が高 まっている。しかし、現時点で、高信頼性化のための材料 設計やその基礎となる破壊現象の理解は十分なされてい なかった。

セラミックスの破壊の素過程はこれを構成する要素の 破壊である。従って、セラミックスの機械的信頼性や耐久 性は、結晶粒子や粒界といった構成要素と同程度のサブµm から数十µm スケールの領域、すなわち、メソスケールで の破壊特性に支配される。これまでに、有限要素法による き裂進展シミュレーションや理論解析などが行われ、材料 の強度や破壊靱性を予測する試みがなされている。この計 算を妥当に行うためには、メソスケールの強度や破壊靱性 を用いなければならないが、使用可能な信頼できるデータ は限られていた。また、量子力学計算等による結晶粒子や 粒界の破壊現象の理解の試みも行われているが、計算結果 の妥当性を検証するためには実験値と比較しなければな らない。単結晶やバイクリスタルを擬似的な結晶粒子や粒 界と見なして実験的に破壊特性を評価することが検討さ れている。しかし、バルクな単結晶やバイクリスタルで実 験できる物質系はわずかであり、セラミックスの計算科学 を支援するには多様な材料系での破壊特性に関する情報 が必要であった。

これらの課題はメソスケールの破壊特性の実測で解決 できると考えられる。しかし、これまでそのような研究は なく、セラミックスの破壊現象の理解と高信頼性材料設計 は不十分なままであった。

これを受けて我々のグループでは、集束イオンビーム加 工装置を利用して断面が縦横数µm、長さが約10µmのマイ クロカンチレバー試験片を加工し、これをナノインデンタ ーで破壊試験することで、微小領域の強度や破壊靱性を測 定できる革新的手法を提案した。これまでに、バルクな単 結晶やバイクリスタルを作製することができないSi₃N₄セ ラミックス中の単一粒子(=単結晶)および粒界の破壊靱 性の実測に世界で初めて成功し、定性的な議論に留まって いたSi₃N₄セラミックス中の粒界破壊靱性の希土類添加物 依存性も実験的に解明するなど研究を進めている。この新 規な方法は現時点で一部の材料での検討であるが、従来得 ることのできなかった領域の強度と破壊靱性を実際の部 材を用いて実測できる点で極めて有用である。この手法を 拡張し、多様な構造の部材に対して、他の破壊特性も含め てメソスケールで評価可能になれば、破壊現象の理解に基 づく高信頼性設計による各種セラミックスの社会実装に 大きく貢献することができる。

そこで本プロジェクトでは、セラミックスの破壊を支配 するメソスケール破壊特性の評価法確立と微構造因子と の相関解明、および、これを活用した高信頼性材料の設計 と創製を行うことを目的として研究を進めている。平成 29 年度は、まず、これまでの研究で用いてきた単結晶 Si を用いて、寸法、および、形状を変化させてマイクロカン チレバー試験片を加工し、この破壊試験を行い、マイクロ カンチレバー試験片の形状と破壊試験条件が測定される 強度や破壊靱性に及ぼす影響を明らかにすることを目的 とした。また、多孔質 SiC 等にマイクロカンチレバー法を 適用し、従来測定法がなく実測されてこなかった領域の破 壊特性をピンポイントで測定することも行った。

2. 実験と結果

2.1 単結晶シリコンの機械的特性評価

近年、機器の微小化に伴って微小部材の需要が高まって いる。例えば、半導体の微細加工技術の発展により微小電 子機械システム(MEMS)が様々な分野で普及しており、MEMS デバイスの構成材料として単結晶シリコンをはじめとした 各種材料が用いられている。非常に微小な構造体である MEMS デバイスの機械的信頼性を確保するためには、これと 同程度のスケールでの機械的特性の評価を行うことが有用 である。また、単結晶シリコンはバルク体で各種機械的特 性が評価されており、マイクロカンチレバー法の確立のた めのモデル材料としては最も適切である。そこで本研究で は、マイクロカンチレバー法によるメソスケール破壊特性 評価法確立を目指して、単結晶シリコンの機械的特性を測 定することを目的とした。

2. 1. 1 実験方法

本研究では単結晶シリコンの表面に集中イオンビーム加 工装置を用いて、断面が約2.5×1.5µmの五角形で長さが約 12µmのマイクロカンチレバー試験片を作製した(図1)。試 料の上面は(001)であり、試験片断面は(110)である。この 時、断面形状の非対称性の指標である歪度の異なる試験片 を作製した。作製した試験片に対し、トライボインデンタ ーを用いて支持部からの距離が10µmの位置を荷重点とする 破壊試験を行い、機械的特性を評価した。また、同じ方位 の単結晶シリコンで 0.5×0.7×6mmの試験片を作製し三点 曲げ試験を行い、機械的特性の比較を行った。

2.1.2 実験結果と考察

図2にマイクロカンチレバー試験片の応力ひずみ曲線(図 中実線)を示す。応力印加直後は応力とひずみは比例関係 にあり弾性変形をしていることが確認された。この領域の 応力ひずみ曲線の傾きから算出したヤング率と試験片の歪 度の関係を図2に示す。これにより、歪度が0.06以下の試 験片では、測定されるヤング率は約176 GPa であり、今回 使用した方位での第一原理計算から求めたヤング率とよく 一致した。これは、この範囲の試験片であれば、他の機械 的特性も精度よく測定できることを意味している。

応力をさらに印加すると、ある応力からは応力とひずみ の関係が比例関係から外れた。試験片を破壊せずに荷重を 除荷した試験片(図中点線)ではヒステリシスを示して永 久ひずみが生じたことから塑性変形を起こしていることが 確認された。降伏応力の平均値は約4.1 GPa となり、この 降伏応力から塑性変形に必要なパイエルス力を計算すると 約1.7 GPa となった。圧縮試験で報告されているパイエル ス応力(約1.4 GPa)とよく一致した。また、マイクロカン チレバー法での曲げ強度は約7.4 GPa、三点曲げ試験の強度 は約174 MPa となり、両者に大きな差がみられた。単結晶 シリコンの破壊靱性から計算される破壊源の大きさは、マ イクロカンチレバー法では約15 nm、三点曲げ試験では26 µm となった。これは、マイクロカンチレバー法で使用する試 験片は微小であるため、粗大な欠陥が排除されたことによ り高い曲げ強度を示したものと考えられる。以上より、ヤ ング率の測定結果から今回のマイクロカンチレバー法での 機械的特性評価は妥当であり、単結晶シリコンの強度や塑 性変形などのミクロスケールに特有の機械的特性をマイク ロカンチレバー法により評価できることが明らかとなった。

2. 2 多孔質 SiC の粒界強度の実測

多孔質 SiC は、耐熱性と熱伝導率の高さから、ディーゼル パティキュレートフィルタ (DPF) に用いられ、高強度化 が求められている。多孔体は粒子が粒界で部分的に接合し ている構造であることから、多孔体の破壊は粒子間接合部 である粒界の破壊と等価である。従って、粒界強度は多孔 体のバルク体強度を支配する重要な因子であると考えら れる。しかし、これまでに粒界強度を測定した研究例はな く、粒界強度とバルク体強度の関係は未解明であった。そ こで、本研究では、多孔質 SiC の粒界強度とバルク体強度 の関係の解明を目的とした。

2.2.1 実験方法

原料粉体として粒径 22µm と粒径 1µm の SiC 粒子を用い、 これらを 1:1 (重量比)の割合で湿式混合した。混合粉 体を成形したものを脱脂した後、Ar 雰囲気下、2200℃、3 時間保持条件で焼成を行い、粒径 10µm の粒子が粒界で接 合した多孔質 SiC を作製した(図 4)。粒界強度を測定す るために、断面が幅約 0.5µm、高さ約 0.9µm の五角形で片 持ち支持梁形状のマイクロカンチレバー試験片をその試 験片端が粒界になるように作製した(図 5)。マイクロカ ンチレバー試験片端部から 3µm の位置にナノインデンタ ーで荷重を印加して破壊試験を行った。強度は、最大荷重 と試験片寸法を用いて梁理論を仮定して算出した。一方、 バルク体強度は、断面が 3×4mm の試験片を用いて 3 点曲 げ試験により測定するとともに、この 1/2、1/5、1/10 の

図4 作製した多孔質 SiC の微構造

寸法の試験片とスパン間距離の 3 点曲げ試験でも測定した。

2.2.2 実験結果と考察

マイクロカンチレバー試験片の曲げ試験を行った際の 荷重は、荷重点変位に対して線形的に増加していた。また、 破壊に至った際の荷重点変位は試験片の高さよりも小さ な値であった。これらより、梁理論による最大応力の算出 は妥当であると判断される。また、SEM 写真より、マイク ロカンチレバー試験片の破壊は粒界で生じていた。従って、 マイクロカンチレバー試験片を用い、梁理論を仮定して得 られる破壊応力は粒界強度であると判断される。このよう にして試験片形状と最大荷重から算出された多孔質 SiC 中の粒界強度を表1に示す。多孔質 SiC の粒界強度はばら ついていたが、試験片12本の平均値は39.2GPaであった。 第一原理計算で予測されている β -SiC の粒界強度は、 Σ 9<122>対応粒界で約 50GPa であり、本研究で得られた多 孔質 SiC の粒界強度の実測値の中で、高い方の値とおおむ ね等しい値であった。これは、本研究で得られた粒界強度 が、SiC の粒界の原子間結合を切断するために必要な理論 強度であることを意味している。また、一般に粒界構造は 結晶方位に依存しており、ランダムな粒界は前述の対応粒 界よりも粒界エネルギーが大きいことから、粒界強度も対 応粒界よりも小さな値になると予想される。さらに詳細な 検討は必要であるが、今回得られた粒界強度のばらつきは 粒界の結晶方位の差異に起因している可能性が示唆され る。今後 EBSD などで結晶方位を同定することで、その多 孔質 SiC の粒界強度の結晶方位依存性を明らかにできる と考えられる。

また、荷重印加開始直後は、荷重は変位に対して線形に 変化していたが、途中から前述の単結晶シリコンと同様に 非線形が現れた。この線形から外れた点を降伏点としたと きの降伏応力を求めたところ、その値の平均は21GPaとな った。これまでに引っ張りあるいは曲げ応力下でのSiCの 降伏現象は全く報告されていないが、SiCのような脆性的 な固体であっても、き裂先端のような引っ張り応力状態で 塑性変形が生じる可能性が示唆された。一方、圧縮応力下 でのSiC単結晶の降伏応力が近年マイクロピラーを用い て測定されており、<0001>方向に圧縮したときの降伏応力 として12~17GPaという値が報告されている。これは本研 究で測定した値とよく一致しており、本研究で測定された 降伏応力が妥当であると考えられる。

図3に3点曲げ試験で測定した多孔質SiCのバルク体強 度を示す。バルク体強度は、試験片寸法の減少とともに向 上した。この現象は寸法効果といい、小さな試験片ほど大 きな欠陥が存在する確率が減少するために生じると考え られており、ワイブル統計解析を適用して、試験片寸法と 平均強度の関係式が導出されている。この関係式に図6の 実験結果を代入して見積もられたネック部1個を持つ10 µmの試験片のバルク体強度は約210MPaとなった。

これらの 2 つの強度の関係について次のように考察した。図4に示すように、多孔体中の粒子が接合したネック

図 5 多孔質 SiC のネック部に作製した マイクロカンチレバー試験片

1	多孔質:	SiCの	粒界強度
---	------	------	------

表

試験片	強度[GPa]
1	24.9
2	38.5
3	61.7
4	55.4
5	27.8
6	47.1
7	54.1
8	18.9
9	49.5
10	40.0
11	29.7
12	22.4
平均	39.2
標準偏差	14.4

図 6 多孔質 SiC の強度と試験片体積の関係

95

部の表面は曲率半径が負である。これに応力が作用した場 合、ネック部表面には応力集中により外部応力よりも大き な応力が作用する。SEM 写真からネック部表面の曲率半径 および気孔の長さを測定した結果、それぞれ 20nm および 53µm であった。これらの値と前述のように粒界強度から 見積もったネック部1個のバルク体強度は 382MPa となっ た。この値は寸法効果から見積もった値とおおむね一致し ていた。ただし、粒界強度の中でも低い強度を有するもの が多孔質 SiC 全体の強度を支配するという最弱リンク説 に則って、測定された粒界強度の中で強度が低い4本の平 均値 (23GPa)を用いてネック部1子を持つ試験片のバル ク体強度は 224MPa となり、両者はよく一致した。従って、 多孔質 SiC の破壊は粒界強度の分布を考えた最弱リンク 説に支配されることが示唆された。

3. 今後の展望

以上、単結晶シリコンを用いた実験結果より、メソスケ ール破壊特性を妥当に測定可能な試験片の形状に関する 知見を得ることができた。また、多孔質 SiC を用いた実験 により、従来得られなかった SiC の粒界強度の実測値を得 ることができ、その値を用いてバルク体の強度をよく説明 できることが明らかとなった。この点は、メソスケール破 壊特性評価に基づく高信頼性材料の設計という観点で、よ い成果が得られたと考えられる。今後は、ユーザーからの リクエストの高い表面窒化処理、コーティングを対象とし た実験を進めていく。さらには、SiC のメソスケールの破 壊特性に関する研究の本質を見極めるため、および、パワ ーモジュールとして利用されており信頼性に関する情報 が必要な単結晶 SiC、および、SiC コーティングを用いて 実験を行う。

光コヒーレンストモグラフィーによる

Al₂O₃セラミックス中の不均質構造観察

高橋拓実,多々見純一,伊東秀高,田口勇

1. はじめに

セラミックス製造プロセスは、粉体から始まり、スラリ ーや顆粒、成形体、焼結体と、各プロセス間で様々な構造 変化を伴う多段階プロセスである。我々は、例えば、焼結 体の構造には成形体の構造が、成形体の構造にはスラリー や顆粒の構造が直接影響を与えるように、プロセス全体が 連環していると捉え、この様を"セラミックスプロセスチ ェーン"と称している。プロセスチェーンを目的に応じて 最適化できれば、所望のセラミックスはできる。従来のア プローチでは、構造形成後の状態における特性を点評価し、 これらの間接的情報をもとにプロセス間の構造変化過程 を推測する方法であり、プロセスチェーンの最適化のため に非常に長い時間と労力を要していた。また、構造変化過 程がブラックボックスであることは、セラミックスプロセ スが職人技術と評される最大の原因であった。実際に、「製 品の強度信頼性を低下させる原因の特定が難しい」「粘度 や密度で工程管理しているにも関わらず、例外が多発す る」といった現場の声は多く、プロセスに潜むブラックボ ックスの解明は喫緊の課題といえる。このブラックボック スを解明する一助になる方法として、本研究では、光コヒ ーレンストモグラフィー (Optical Coherence Tomography: OCT) に注目した。

光コヒーレンストモグラフィー (OCT) は光の干渉を利 用した内部構造観察法であり、入射光と同じ波長と位相を もつ信号光 (反射直進光)のみを検出するため散乱光の影 響を受けず、高速スキャンによるその場観察が可能という 特長を有するが、これをセラミックスプロセスに適用した 報告はない。適用例の一つとして、セラミックスの高信頼 性化のための破壊源となる欠陥の非破壊・高速検出がある。 本稿では、人工的に欠陥を導入した Al₂O₃ セラミックスの 内部構造を OCT で観察し、既存の内部構造観察法との比 較を行い、OCT 観察における基礎的知見を得ることを目 的とした。

2. 実験と結果

観察試料として、市販の Al₂O₃ 顆粒からなる乾式成形体 中に造孔材として真球状カーボン粒子をいれ、これを焼成 することで、100-200µm の球状欠陥群を含む焼結体(相対 密度 98%)を作製した。

図1 各手法で得られた Al₂O₃焼結体中の 同一の球状欠陥群の観察像 (a)赤外線顕微鏡(b)超音波顕微鏡 (c)X線 CT (d) OCT (最大強度抽出)

図1は、観察試料の同一箇所に対して、赤外線顕微鏡、 超音波顕微鏡、X線CT、OCTによる内部構造観察を適用 した結果、得られた観察像である。赤外線顕微鏡では、内 部構造を反映した透過光を検出するため、深さ方向の情報 を含む2次元像が得られ、図1(a)に示すように、Al2O3 焼結体中の100-200umの球状欠陥群が明瞭に観察された。 次に、超音波顕微鏡では、試料中の音響インピーダンス差 により発生した超音波反射波を検出するため、図 1 (b) に示すように、球状欠陥の超音波照射側に近い界面が明る く観察された。また、X線CTでは、試料内部の相対的な X線吸収率差を可視化するが、気孔のように、吸収する物 質がない領域は暗く観える^{1,2)}。図1(c)に示すように、 X線CTでも同様の配置の球状欠陥群が黒点として明瞭に 観察された。また、X線CTによる観察から、球状欠陥が 互いに異なる深さに存在していることもわかった。これら に対し、OCT では、深さ方向から観察した場合、観察対

97

象である球状欠陥が同一の高さに存在してないため、特定 の断面像(C-scan)のみでは全ての球状欠陥群が観察でき ない。そこで本研究は、ImageJ³⁻⁵⁾を用いて、取得した全て の断面像をスタックし、輝度が最大の領域を閾値フィルタ ーにより自動抽出し、一枚絵に表示する簡単な画像処理を 施した。その結果を図1(d)に示す。OCT も屈折率差に 起因した反射直進光を検出することから、球状欠陥の界面 での反射に起因する輝点が観察されるが、他の手法で観察 された球状欠陥群と同じ位置に強い信号が検出されてい ることがわかった。しかし、図1(d)のみでは、これが 球状欠陥なのかどうかの判断はできない。

図2は、図1(d) でスタックされた球状欠陥群の深さ 方向の断面像の一例である。特に、破線の円で囲んだ箇所 の球状欠陥について、見え方の変化が明確な断面像を選定 した。観察位置は、図 2 (a) \rightarrow (b) \rightarrow (c) \rightarrow (d) の順 により深くなる。まず、図 2(a) では、塊状の輝点の集 合構造(約 100µm)が鮮明に認識できた。さらに(b)→ (c) と観察位置が深くなると、集合構造の形態はリング 状に変化した。さらに図 2(d) では、再び塊状の集合構 造として観察されたが、その大きさは図 2 (a) と比較す ると、明確に小さかった。輝点の集合構造の観察形態が変 化する理由は、次の通りである。球状欠陥の上部の界面で は、反射による強い信号が検出されるため、塊状の輝点の 集合構造として観察される。欠陥内部では散乱因子がない ため光は透過するが、同じ高さにある球状欠陥の端部では 反射が起こる。このため、球状欠陥を横断する断面におい ては、リング状の輝点の集合構造が観察される。球状欠陥 の下部の界面に到達した光は、上部同様、反射されるが、 減衰による信号光強度の低下が起こるため、塊状の輝点の 集合構造の大きさは、より小さく観察される。図3は、図 1 (d) や図2の観察面に対して垂直な断面 (B-scan) から 観察した球状欠陥である。C-scan は観察範囲と解像度によ ってイメージング速度は異なるが、B-scanのイメージング 速度は光源のレーザー周波数に依存し、ほぼリアルタイム である。図3に示したように、B-scan でも球状欠陥が明瞭 に観察されることから、OCT 観察は焼結体中の欠陥の非 破壊高速検出も可能であることがわかった。この結果をも とに、我々は OCT 観察による強度試験片の強度予測にも 成功している。

さらに、より深部に存在するより微細な球状欠陥の観察 を試みた。試料は、50µm以下の球状欠陥を導入した Al₂O₃ 焼結体(厚さ 1.5mm)とした。まず、内部構造を OCT で 観察し、検出された欠陥の空間位置特定を行い、その後、 特定箇所を X線 CT(直交 CT)で観察した。

図4は、画像処理(Image Jを用いて、バックグラウン ドコントラストの均質化→明るさとコントラストの調整) 済みの OCT 像である。図中に示したように、引っ張り面 を基準として、深さ約750 μ mの位置に欠陥寸法44 μ m(OCT 像は Al₂O₃の屈折率(1.7)補正後の寸法であるが、欠陥内 部は空気層なので、OCT 像のスケールに Al₂O₃の屈折率を 掛けて補正した値とした)の球状欠陥が観察された。 図 5 は、図4 と同一箇所を X 線 CT (直交 CT)で観察して得

図 2 OCT で観察された Al₂O₃焼結体中の球状欠陥 (最大強度抽出)

図 3 OCT で観察された Al₂O₃焼結体中の球状欠陥 (B-scan)

図 4 OCT 像を用いた欠陥の空間位置特定

図 5 OCT 像と X線 CT 像の比較による欠陥同定

られた像である。比較として、図4に示した OCT 像の対象像も併せて示した。図5より、OCT 像で観察された位置と同一箇所に、欠陥寸法46µmの球状欠陥がX線CT像で観察され、図4で観察された欠陥と良い一致を示した。以上から、Al₂O3焼結体中の深さ約750µmに存在する50µm以下の微小な球状欠陥をOCTにおいて観察できることが明らかとなった。

3. 考察及び今後の展望

OCTにより、Al₂O₃焼結体中の球状欠陥を観察した。OCT では、同様の欠陥形態でも観察面によって見え方が変わる ことが分かった。たとえば、図2はC-scan像であるが、 球状欠陥は観察位置を下げていくにしたがって、輝点の集 合構造の形態が塊状→リング状→塊状と変化する。これに 対し、図 3-5 は同様の球状欠陥の B-scan 像であるが、球状 欠陥は対になった明るい領域として観察される。こうした 観察像の差異は、観察面によって入射光の反射の見え方が 異なることに起因する。実際には、OCT 観察は3次元観 察も高速で行うことができるため、多方向から同時に観察 すれば、欠陥形態の同定はそれほど難しくはない。ただし、 OCT 像の見え方は、観察対象の物性・材質・密度(気孔 率)によって異なるため、同じ物質であっても、内部構造 (粒子径や密度)が異なれば、欠陥抽出のための画像処理 法も当然異なる。したがって、OCT 観察法を確立するた めには、多様な系での OCT 観察の知見を蓄積し、これを データベース化することが重要と考えられる。

今後はこれらの知見をもとに、例えば、乾式成形におけ る顆粒の変形過程や、鋳込み成形過程、脱脂過程や焼結過 程における構造変化のその場観察を進める。特に、OCT は輻射の影響を受けないため、高温環境下の構造変化過程 の動的観察に適している。また、画像処理についても並行 して検討を進めており、目的に応じた機械学習による画像 処理の自動化を試みている。さらに、今回用いた OCT は、 あくまで医療用に最適化された市販の SS-OCT であり、産 業用途の OCT は未だ開発段階であることから、今後のさらなる発展が期待される。

【参考文献】

1. T. Hondo, Z. Kato, S. Tanaka, J. Ceram. Soc. Japan, 122 (2014).

2. T. Hondo, Z. Kato, K. Yasuda, F. Wakai, S. Tanaka, Adv. Pow. Tech., 27 (2016).

3. Rasband, W.S., ImageJ, U.S. National Institutes of Health, Bethesda, Maryland, USA, imagej.nih.gov/ij/, 1997-2018.

4. Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 9 (2012).

5. Abramoff, M.D., Magelhaes, P.J., Ram, S.J., Biophotonics International, 11 (2004).

業績

【原著論文】

 Degradation evaluation of Si₃N₄ ceramic surface layer in contact with molten Al using microcantilever beam specimens, S. Fujita, J. Tatami, T. Yahagi, T. Takahashi, M. Iijima, J. Eur. Ceram. Soc., 37, 4351-4356, (2017)

【口頭発表】 【国外】

多々見純一(藤田紗帆、矢矧束穂、高橋拓実、飯島志行),Bending strength and fracture toughness of Si3N4 ceramic surface in contact with molten aluminum measured using microcantilever beam specimens、PacRIM12、2017年5月、アメリカ

2. 高橋拓実(佐渡万里子、杉本菜奈子、多々見純一、飯 島志行) C-axis oriented Si3N4 ceramics fabricated by preparing multilayered-graphene coated β -Si3N4 seeds and its orientation in a very low magnetic field、PacRIM12、2017 年 5 月、アメリカ

3. 多々見純一(高橋拓実、飯島志行) Transparent and Luminescent SiAlON bulk ceramics for high power LED, PacRIM12、2017年5月、アメリカ

4. 高橋拓実(多々見純一、飯島志行)Fabrication of translucent and fluorescent Eu doped CaAlSiN3 bulk ceramics by spark plasma sintering、,PacRIM12、2017年5月、アメリカ

5. 多々見純一(鄭光珍、飯島志行、高橋拓実) Pulverization of Y2O3 nanoparticles by using nanocomposite particles prepared by mechanical treatment、PacRIM12、2017年5月、 アメリカ

6. 高橋拓実(多々見純一), Orientation behavior of multilayered-graphene coated glass fiber in a magnetic field、PacRIM12、2017年5月、アメリカ

7. 多々見純一、Local mechanical properties of advanced structural ceramics measured using microcantilever beam specimens、ECerS2017、2017年7月、ハンガリー

8. 高橋拓実、Fabrication of translucent and fluorescent Eu doped CASN bulk ceramics using a spark plasma sintering technique、ECerS2017、2017年7月、ハンガリー

9. 井本有美(多々見純一、坂本文香、飯島志行、高橋拓 実、矢矧束穂、堀内崇弘、横内正洋)、Relationship Between strengths of a neck and a bulk body pf porous SiC、ECerS2017、 2017 年 7 月、ハンガリー

10. 坂本文香(高橋拓実、多々見純一、飯島志行)、

Fabrication of oriented h-BN/epoxy resin composites by applying a low magnetic field using multi-layered-graphene-coated platelets、ECerS2017、2017 年7月、ハンガリー

11. 高橋拓実(多々見純一、飯島志行)、Fabrication of

Translucent CaAlSiN3:Eu 2+ Bulk Ceramics using a Spark Plasma Sintering Technique、ISNT2017 & ISSNOX5、2017 年8月、北海道

12. 井本有美(多々見純一、坂本文香、飯島志行、高橋拓 実、矢矧束穂、堀内崇弘、横内正洋)、Relationship between strengths of a neck and a bulk body of porous SiC、ISNT2017 & ISSNOX5、2017 年 8 月、北海道

13. 坂本文香(高橋拓実、多々見純一、飯島志行)

Fabrication of oriented h-BN/epoxy resin composites by applying a low magnetic field using multi-layered-graphene-coated platelets、 ISNT2017 & ISSNOX5、2017 年 8 月、北海道

14. 多々見純一、Fabrication of Transparent and Fluorescent Ca-α SiAlON:Eu Bulk Ceramics、ISNT2017 & ISSNOX5、 2017 年 8 月、北海道

15. 佐渡万里子(高橋拓実、多々見純一、飯島志行)、

Improvement in thermal conductivity of Si3N4 ceramics through a low magnetic field orientation technique、ISNT2017 & ISSNOX5、2017 年 8 月、北海道

16. 高橋拓実(多々見純一、飯島志行)、先進セラミック スにおける傾斜微細構造のための粒子および粉体設計、 JSPM 60th anniversary、2017 年 11 月、京都

17. 多々見純一 (高橋拓実)、Observation of internal structure of ceramic slurry, green body and sintered body by optical coherence tomography、ICACC2018、2018年1月、アメリカ

18. 多々見純一(井本有美、飯島志行、矢矧束穂、高橋拓 実)、Measurement of grain boundary strength of the neck in porous SiC Ceramics using microcantilever beam specimens、 ICACC2018、2018 年 1 月、アメリカ

19. 多々見純一(坂本文香、高橋拓実、飯島志行)、 Non-destructive analysis and strength prediction of ceramics using optical coherence tomography、ICACC2018、2018年1 月、アメリカ

【国内】

20. 井本有美(多々見純一、坂本文香、飯島志行、高橋拓 実、矢矧束穂、堀内崇弘、横内正洋)、多孔質 SiC の粒子 間接合部の強度とバルク体強度の関係、粉体工学会春季研 究発表会、2017 年 5 月、東京

21. 高橋拓実(多々見純一、坂本文香、飯島志行)、グラフェンの巨大反磁性が駆動する微粒子の低磁場配向、粉体工学会春季研究発表会、2017年5月、東京

22. 多々見純一(高橋拓実)、光コヒーレンストモグラフィーによるセラミック粉体、スラリー、成形体、焼結体内部構造観察、粉体工学会春季研究発表会、2017 年 5 月、 東京

23. 高橋拓実、高熱伝導率化のための c 軸配向窒化ケイ素

セラミックスの開発、サイエンス&テクノロジーセミナー、 2017年6月、愛知

24. 井本有美(多々見純一、飯島志行、矢矧束穂、高橋拓 実、堀内崇弘、横内正洋、近藤敏之)、多孔質 SiC の粒界 強度とバルク体強度の関係、日本セラミックス協会関東支 部研究発表会、2017 年9月、神奈川

25. 高橋拓実、微構造制御に立脚した高性能セラミックスの開発、バルクセラミックスの信頼性に関するワークショ ップ、2017年9月、静岡

26. 多々見純一(高橋拓実、飯島志行)、赤外線を利用したセラミックスの内部構造観察、第30回日本セラミックス協会秋季シンポジウム、2017年9月、兵庫

27. 高橋拓実(坂本文香、多々見純一、飯島志行、矢矧束 穂)、光コヒーレンストモグラフィーによる Al2O3 セラミ ックスの内部構造観察~他の内部構造観察法との比較~、 第30回日本セラミックス協会秋季シンポジウム、2017年 9月、兵庫

28. 坂本文香(高橋拓実、多々見純一、飯島志行、矢矧束 穂)、光コヒーレンストモグラフィーによる Al2O3 セラミ ックスの内部構造観察~人工欠陥の3次元観察と強度予 測~、第30回日本セラミックス協会秋季シンポジウム、 2017年9月、兵庫

29. 井本有美(多々見純一、飯島志行、矢矧束穂、高橋拓 実、堀内崇弘、横内正洋、近藤敏之)、マイクロカンチレ バー法で測定した多孔質 SiC の粒界強度、第 30 回日本セ ラミックス協会秋季シンポジウム、2017 年9月、兵庫

30. 高橋拓実、多層グラフェン被覆粒子を用いた低磁場配 向プロセスによる高機能性材料開発日本磁気科学会無 機・金属分科会研究会、2017年11月、京都

31. 坂本文香(高橋拓実、多々見純一、飯島志行)、3次元 光コヒーレンストモグラフィー観察によるセラミックス 焼結体の強度予測、第56回セラミックス基礎科学討論会、 2018年1月、茨城

32. 多々見純一(高橋拓実、飯島志行、矢矧束穂)、マイ クロカンチレバー試験片を用いたセラミックスの強度お よび破壊靭性のメソスケール測定、第56回セラミックス 基礎科学討論会、2018年1月、茨城

33. 秋元勇人(多々見純一、飯島志行、高橋拓実)、AIN セラミックスの透光性に及ぼす焼結助剤の影響、日本セラ ミックス協会 2018 年年会、2018 年 3 月、宮城

34. 山口拓志(多々見純一、飯島志行、矢矧束穂)、マイ クロカンチレバー法で測定した単結晶シリコンの機械的 特性、日本セラミックス協会 2018 年年会、2018 年 3 月、 宮城

35. 高橋拓実(多々見純一)、光コヒーレンストモグラフィーによる Al2O3 スラリーの内部構造観察、日本セラミックス協会 2018 年年会、2018 年 3 月、宮城

【特許】

(1) 国内特許出願 3件(2) 国外特許出願 2件