SS-OCT を用いた材料の内部構造の非破壊評価技術

高橋 拓実(機械・材料技術部 材料物性グループ)

多々見 純一 (横浜国立大学)

1. はじめに

特性を劣化させる悪質な不均質構造(以下、欠陥)の低 減は、材料の高信頼性化と高機能化のために不可欠なアプ ローチである。従来、仕掛品や製品の特性や構造を点で評 価し、これらに相関する多様なプロセス因子の影響を長年 の経験と勘に基づいて推測し、諸条件を決定する場合が多 い。しかし、原材料や装置、温湿度などの製造環境、人な どが変わることで問題に対する認識が複雑化し、一からの 最適化が必要になるケースも少なくはない。重要なことは、 製造工程のいつ・どこで・どのように欠陥が形成したかと いう実態を直接的に理解して、得られた情報をプロセスへ フィードバックし、的確に制御することである。このため には、実使用環境に近い環境下において、観察や測定を非 破壊で行う新しい評価技術が必要である。

筆者はこれまで、セラミックス材料の高信頼性化や高機 能化に資するプロセス技術や評価技術の研究開発に従事 してきた。セラミックス材料は、粉体に始まり、高温での 焼結や、応力場や化学反応場の作用に起因した顕著な内部 構造変化を伴う多段階プロセスを経て製造される。このた め、プロセス中で起こる現象の実態はほとんどがブラック ボックスであり、多岐にわたるプロセス因子の相関関係は 十分に解明されていない。信頼性や機能性の観点で問題と なる欠陥のスケールは、数 µm~サブ mm (メソスケール) のである。これは、原料粉体を構成する粒子の形態とも密 接に関係する。また、高温下、あるいは化学反応場や応力 場が作用する環境下での内部構造変化も同様のスケール である。これらの観点から、メソスケール現象を的確に捉 えうる高い時空間分解能が求められる。さらに、実使用環 境に近い環境下での評価のためには、評価システムの高い 拡張性が不可欠である。これらの要求の全てを満たす基盤 技術として、筆者らは波長掃引型光コヒーレンストモグラ フィー(以下、SS-OCT)に着目した。

SS-OCT は、医療分野で発達した非侵襲の内部構造観察 技術で、身近には眼底検査装置として普及している¹⁻³。 筆者らの研究目的における SS-OCT の実用的な特長は以 下の通りである。

- 物質透過性が高い近赤外光を光源とするため、多様 な材料に対して適用可能である。
- 3次元観察が可能である。
- μm オーダーの高分解能である。
- ビデオレート以上の動的 2D 観察と秒スケールの高速 3D 観察が可能である。
- 光源と同じ位相と波長の反射光のみを検出するため、
 高温下の輻射など、周囲の散乱光の影響を受けない。

- 装置が PC ラックに積載できる程度にコンパクトで 可搬性がある。
- 家庭用ビデオカメラのようなプローブ部は、干渉計 と接続する光ファイバーを含むケーブル長の範囲で 自由に取り回せる可動性がある。

これらの特長を活かして、筆者らはこれまでセラミック ス材料の製造に関わる多様な形態の粉体材料(粒子が液中 に分散したスラリーや顆粒、成形体など)の内部構造変化 をその場観察し、報告してきた⁴⁻¹⁰。これらの詳細につい ては既報を参照いただくとして、本稿では用いた SS-OCT の観察原理や、基本的な観察性能を決定する光源の仕様に ついて簡単に説明し、身近で一般的な観察対象として、以 下の4つの事例を紹介する。

2. SS-OCT

2.1 観察原理¹¹⁾

SS-OCT の光学系の模式図を図1に示す。光源から出た 光は、ビームスプリッターで反射光(参照光)と透過光に 分けられる。透過光は観察対象へ照射され、内部構造情報 を反映した散乱光としてビームスプリッターに戻ってく る。この時、ミラーで反射されてビームスプリッターに戻 ってきた参照光と同じ位相と波長を保った反射光のみが 干渉するので、光干渉信号として検出される。光干渉は、 OCT=Optical Coherence Tomography(光干渉断層法)の名 前通りに全ての方式の OCT で共通する基本原理で、光が 持つ深さ方向情報を取り出す手法である。SS-OCT は光源 が波長可変レーザー(Tunable laser)であるため、周波数 を直線的に変えながら深さ方向を計測する。得られる情報 は周波数に対する光干渉信号強度(スペクトル干渉信号)

図1 SS-ОСТの光学系の模式図

図2 冷凍イチゴの断面像

であるから、これを逆フーリエ変換することで深さ方向の 位置情報が得られる。

2.2 光源の仕様

光源の波長は、内部構造観察では重要な因子である。生体観察を主として開発されてきた経緯から、市販の OCT 装置では水による吸収がない「生体の窓」と呼ばれる近赤 外の波長帯が選択される。たとえば、眼底検査装置では 1000 nm が多いようである。筆者らは、中心波長 1300 と 1700 nm の光源を採用した SS-OCT 装置 (IVS-4000、santec ㈱製)をこれまで用いてきた。大まかには、高深達な観察 では長波長,空間分解能では短波長が有利である。また、 水による吸収の影響は 1700 nm の方が大きい。

波長可変レーザーの場合、光源の掃引周波数がスキャン 速度を決定する。市販装置の掃引周波数は 20-100 kHz で あり、これは深さ方向スキャン (A-scan) が毎秒 2-10 万回 行われることを意味する。A-scan を水平方向に繰り返す

(B-scan) と 2D 断面像を取得でき、B-scan を奥行方向に 繰り返すと 3D 情報を取得できる。今、掃引周波数 20 kHz の光源からなる SS-OCT で $1 \times 1 \times 1$ mm の空間情報を空間 分解能 5 µm/pixel で取得する場合を考えてみる。本条件に おいて、B-scan を 1 回完了するための A-scan の繰り返し 数は 200 回である。すなわち、100 fps で 2D 像を表示可能 である。さらに、C-scan を 1 回完了して 3 次元情報を取得 するための B-scan の繰り返し数も 200 回であり、計算上 の所要時間は 2 s である。

3. 観察事例

3.1 イチゴ

図 2 は、OCT で観察した冷凍イチゴの断面像である。 OCT のプローブと観察対象の位置関係、ならびに画像間 の対応は図中に黄色のラインで示した。OCT 像において、 コントラストは信号強度の高低と対応する。すなわち、光 学的に不均質な界面が存在すると反射が起こるので、高コ ントラストで表示される。図 2 で見られるように、イチゴ の内部では、大きな楕円体の構造と、これを囲む微細組織 から構成されている様子が観察された。前者は粒状の痩果

図3 食品用のプラスチック容器の壁の断面像

(Achene)で、後者は赤色の花床(Receptacle)である。 さらに花床の内部では、表皮細胞や皮層細胞などで構成さ れる皮層(Cortex)側と、中心近傍の髄(Pith)側とで組 織の形態が異なる様子が明瞭に観察された¹²⁾。また、イチ ゴの痩果は子房壁(Ovary wall)で胚珠(Ovule)を覆った 構造である¹³⁾。図2のいずれにおいても、痩果の内部に外 形に沿った線状信号が観察されたことから、これは子房壁 と胚珠の界面に相当すると考えられる。イチゴに限らず、 植物の大部分を構成する植物細胞は細胞壁や細胞質で構 成される。これらの屈折率は、無機物や人体の皮膚等と比 べると小さく(細胞壁が1.46、細胞質が1.36)、主成分の 水の屈折率(1.33)との差も小さい¹⁴⁾。すなわち、内在す る光学的不均質構造での散乱が小さく、内部構造が鮮明に 観察されたと考えられる。

3.2 食品用のプラスチック容器の壁

図3は、OCT で観察したフルーツの果肉入りゼリーの

図4 保温ボトル表面の(A)表面反射像(B)OCT観察で取得した3次元像(C)塗膜の断面像(D)塗膜の内部構造

プラスチック容器の壁の断面像である。OCT のプローブ と観察対象の位置関係は図中に示した。高強度の平行な線 状信号は、容器の外壁面と空気、内壁面とゼリーの界面で の反射に起因すると考えられる。また、容器の壁の内部に おいて、破線の円で囲った箇所で局所的に強い信号が観察 された。これらは奥行方向(C-scan 方向)に連続している ため、たとえば空気を内包する球状、あるいは面状の欠陥 と樹脂との界面での反射に起因すると考えられる。さらに、 外壁面と内壁面の間のちょうど中心付近に低強度の線状 信号が観察された。これは酸素を遮断するためのガスバリ ア層と考えられ、肉眼ではわからない容器の多層構造が OCT 像では明確に検出できることが分かった。また、ゼ リーの内部においては、様々な大きさの塊状信号が観察さ れた。これは、ゼリーとゼリーに含まれる果肉との界面で の反射に起因すると考えられる。

3.3 保温ボトル表面の塗膜

図4は、保温ボトル表面の(A)表面反射像(B)OCT 観察で取得した3次元像(C)塗膜の断面像(D)塗膜の 内部構造である。まず、図4(A)において、多数のスク ラッチや汚れに加え、塗膜の一部が剥がれ落ちて再付着 (図中、破線の円で囲った領域の周辺)した箇所も確認し た。図4(B)は、図4(A)の黄色の破線で囲った10×10 mmの領域に対して、8.9 µm/pixelの空間分解能でOCT 観 察して取得した3次元像である。所要時間は約11秒だっ た。図4(B)に示したように、肉眼では確認しづらいス クラッチや汚れなども含め、図4(A)の表面反射像とよ く対応していることがわかった。さらに、剥がれ落ちた塗 膜が再付着した領域においては、塗膜に隠れて表面反射像

では認識できなかったスクラッチが明瞭に観察された。こ の結果は、塗膜下の情報を非破壊で取得できていることを 意味する。さらに、水色の破線部における深さ方向の断面 像を図4(C)に示した。ここで、図4(C)は視認性を考 慮し、画像処理で LUT (ルックアップテーブル)を調整 してカラー化した。色は図中のカラーバーの信号強度と対 応する。また、▽マークは図4(B)の3次元像との位置 関係を示す。塗膜下のステンレス鋼部分は近赤外光を吸収 するため構造情報を取得できないが、塗膜内においては光 学的に不均質な構造を有していることがわかった。詳細な 解析のために、塗膜内部の拡大図を図 4(D) に示した。 図 4 (D) において、空気に接している表面側から深さ方 向に向かって紫色、橙色と線状信号の色が変化しているこ とがわかった。紫色の線状信号は空気と塗膜の界面での反 射に起因すると考えられる。一方、さらに高強度の橙色の 線状信号は、より屈折率差が大きい界面の存在を示唆して いる。すなわち、塗膜とステンレス鋼の界面での反射に起 因すると考えられる。また、塗膜中に高強度の点状信号が 観察された。本信号は奥行方向(C-scan 方向)に連続性を 示したことから、塗膜中に内在する欠陥に起因すると考え られる。以上の結果から、OCT 観察は金属を含む製品に 対しても、評価目的によっては素早く、高分解能かつ3次 元で内部構造情報を評価できる有用な手法であることが わかった。

3. 4 医薬品錠剤

錠剤の崩壊性は、狙った場所やタイミングで人体に原薬 を吸収させる第一歩となる重要な特性の一つである。とり わけ、口腔内崩壊錠の普及に伴い、的確な錠剤の定量設計

図5 水中での崩壊に伴う錠剤の内部構造変化のリアルタイム動的2D観察

に基づく品質管理の必要性が高まっている。しかし、錠剤 の崩壊性評価は従来、外観変化による崩壊時間の測定しか 行われておらず、液中で崩壊する現象の実態はブラックボ ックスだった。図5は、市販の医薬品錠剤の水中での崩壊 に伴う内部構造変化過程を動的に観察した結果である。観 察時のフレームレートは 82 fps、面内分解能は 8.9 μm/pixel とした。図5のOCT像の経時変化から、浸水直後の水と 錠剤の界面位置が徐々に上昇したことがわかった。これは 錠剤が吸水し、膨潤しているためである。一方、赤色の破 線で囲った錠剤端部では、より顕著な体積膨張が短時間で 進行する様子が観察された。このような不均質な膨潤は、 吸水経路を決める錠剤の内部構造と密接に関係すると考 えられる。打錠は一軸加圧成形で行うため、加圧方向(図 5の A-scan 方向に相当) に粒子が充填しやすくなる。すな わち、粒子と空気の界面の数が増える。また、異方的な加 圧は粉体層に応力分布をもたらすため、錠剤の表面近傍と 内部とで粗密差を生じさせる。こうした製造工程のプロセ ス因子の影響で生じた構造不均質性は、図5において側面 から膨潤が顕著に進行した結果と相関すると考えられる。

4. まとめと今後の展望

果物、プラスチック容器、塗膜、錠剤と、多様な観察対 象での観察事例の紹介を通して、OCT 観察で得られる構 造情報の「質」は、観察対象に内在する光学的な不均質構 造と密接に関係することがわかった。果物やプラスチック 容器は内包する光学的に不均質な界面での屈折率差が小 さいため、深さ方向への信号強度の低下(減衰)は小さく、 内部構造を鮮明に観察することができた。塗膜は、果物や プラスチック容器と比べて深さ方向の距離が圧倒的に短 いものの、内在する光学的な不均質構造を明確に検出する ことができた。本結果は、類似した材料構成であるインフ ラ構造物の塗膜の非破壊検査などに対しても同様に有効 性を示すことが期待され、OCT 観察の新たな応用の可能 性を示唆している。錠剤は圧粉体であるため、粒子同士の 界面や顆粒間の空隙など、多数の光学的に不均質な界面を 内包する。したがって、内部散乱が大きくなり、OCT 像 は不鮮明化する。このような散乱体の内部構造を鮮明にす るためには、X線CTのように既に確立した手法での並行 評価に基づく的確な画像処理プロセスを確立する必要が ある。筆者らは、機械学習による画像処理プロセスの最適 化も検討を進めている。一方で、構造の可視化ではなく、 構造変化の定量的な理解であれば、スペックルパターンの 変位量の解析でも可能である。スペックルパターンは、反 射光同士の干渉で OCT 像に一様に生じる粒状のランダム パターン(ノイズ)である。その反面、光を散乱させる要 因を全て同一としなければ同じパターンが得られない構 造敏感な性質をもち、「光の指紋」としてセキュリティキ ーにも利用されている。筆者らは、SS-OCT による動的 2D 観察と重量変化の同時測定を両立する評価システムを構 築し、さらにスペックルパターンの変位量をデジタル画像 相関(DIC)法で解析することで、吸水を起点とした錠剤 の崩壊に伴う内部構造変化過程の定量的な可視化にも成 功した。本成果については、今後、別紙で報告する。また、 散乱体の内部構造を OCT 観察すると、信号強度は表面で の反射が最も高く、深さ方向に減衰する。減衰の大きさ(減 衰率)は、内在する光学的な不均質構造の存在形態によっ て決まる。そのため、減衰率の分布を3次元的にマッピン グすれば、光学的な構造不均質性をミリ範囲で定量評価す ることもできる。筆者らは、異なる内部構造をもつ Al2O3 成形体や焼結体に対して上述した評価を行うことにより、 原料粉体を構成する粒子の形態や成形方法などで導入さ れた構造不均質が、最終製品である焼結体中の不均質構造 の存在形態とよく相関することを定量的に示すことにも 成功した。今後はさらに検討を進め、従来の密度や微構造 評価だけでは理解しきれなかった材料中の構造不均質性 とプロセス因子との相関関係の解明に尽力していく。

【参考文献】

 D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto: Science, 254, 1178-1181 (1991).

- M. Haruna, M. Ohmi, J. Soc. Insturum. Control Engnr., 45, 915-921 (2006).
- 3. M. Haruna, Medical Photonics, 1, 1-5 (2010).
- 高橋拓実,多々見純一,波長掃引型光コヒーレンス トモグラフィーによるセラミックス内部構造の非破 壊評価技術, CERAMICS JAPAN, 56 (1), 7-10 (2021)
- 5. 高橋拓実, 多々見純一, 光コヒーレンストモグラフ ィーによる Al₂O₃ 顆粒の一軸加圧下における粉体層 中の空隙の形態変化過程のその場観察, 粉体および 粉末冶金, 67 (11), 615-620 (2020)
- T. Takahashi, Control of the Particle-Assembled Structure and a Novel Evaluation Technique for High-Performance Ceramics, Journal of the Ceramic Society of Japan, 128 (10), 738-746 (2020)
- 高橋拓実,多々見純一,光コヒーレンストモグラフ ィーによる Al₂O₃焼結体の内部構造観察, CERAMICS JAPAN, 55 (2), 103-107 (2020)
- F. Sakamoto, T. Takahashi, J. Tatami, M. Iijima, Prediction of strength based on defect analysis in Al₂O₃ ceramics via non-destructive and three-dimensional observation using optical coherence tomography, Journal of the Ceramic Society of Japan, 127 (7), 462-468 (2019)

- 高橋拓実、多々見純一、坂本文香、伊東秀高、飯島志 行、光コヒーレンストモグラフィーによるセラミッ クス焼結体とスラリーの内部構造観察、粉体および 粉末冶金、65, 10, 659-663 (2018)
- 高橋拓実,多々見純一,飯島志行,伊東秀高,田口勇, セラミックスプロセスチェーンの最適化のための光 コヒーレンストモグラフィー観察,FC Report 春号, 36 (2), 62-67 (2018)
- 山成正宏, OCT 技術の基本を紐解こう, 視覚の化学, 39 (3), 37-44 (2018)
- J. Suutarinen, K. Heiska, P. Moss, K. Autio, The effect of calcium chloride and sucrose prefreezing treatment on the structure of strawberry tissues, LWT - Food Science and Technology, 33 (2), 89-102 (2000)
- C. Kang, O. Darwish, A. Geretz, R. Shahan, N. Alkharouf, Z. Liu, Genome-Scale Transcriptomic Insights into Early-Stage Fruit Development in Woodland Strawberry Fragaria vesca, The Plant Cell, 25 (6), 1960-1978 (2013)
- (14. 栗原大輔,水多陽子,透明化技術を用いた植物組織 傾向観察のすすめ, Plant Morphology, 29, 8-86 (2017)

【外部発表】口頭発表 3件, 論文等発表 4件