Ni 板の親水化に対するプラズマ照射の影響

安井 学、黒内 正仁、金子 智(電子技術部 電子材料グループ) 長沼 康弘(機械材料技術部 解析評価グループ) 田中 聡美、加藤 千尋(化学技術部 環境安全グループ)

1. はじめに

ナノインプリント用金型として,著者らは耐熱性と離型 性に優れる Ni-W めっき膜を用いた Ni-W 電鋳金型を研究 している¹⁾. 具体的には,ナノパターンを形成した Ni 板 上に 80 µ m 前後の厚みの Ni-W めっきを行い,その後, Ni 板から剥がした Ni-W 膜を Ni-W 電鋳金型に使用すること を目指している.ナノパターンを形成した Ni 板は超撥水 を示すため,プラズマ照射で Ni 板表面を親水化し, Ni 板 に対する Ni-W めっき膜の密着力を確保する必要がある.

しかし、図1に示す通り、Ni表面の接触角が超親水性 を示す状態であっても、プラズマの照射時間によって、Ni-Wめっき膜の析出形状に大きな差が生じた²⁾.この原因を 究明するため、プラズマ照射時間を変化させた Ni 板表面 を分析し、検討した結果³⁾を報告する.

2. 実験

1) フーリエ変換赤外分光光度計分析

プラズマ照射により Ni 板表面に生じる官能基を特定す るため、フーリエ変換赤外分光光度計(日本分光 IRT-7000) に、高感度反射装置(日本分光 RAS PRO410-H型)を取 り付け、入射角 85 度で高感度赤外反射スペクトルを測定 した.

基板は鏡面研磨を行った純度が99.9%のNi板を用いた. プラズマ装置にはSEDE-GE (Meiwafosis)を用いた.放電 方式はグロー放電であり,2Pa まで真空引きを行った後, 大気を導入してチャンバー内の圧力は8Pa に調整した.電 流値は3.5~4mA であった.プラズマ照射時間の影響を見 るため,プラズマ照射時間は2分と20分に設定した.

2) X 線光電子分光分析

プラズマ照射により Ni 板表面に影響を与えた元素を特

定 す る た め , X 線 光 電 子 分 光 (X-ray photoelectron spectroscopy : XPS) 分析により,表面数 nm の元素組成と 化学結合状態を評価した.使用装置は X 線光電子分光装置 (アルバック・ファイ PHI5000 VersaProbe II) であった. プラズマ照射時間は未照射,2分と4分の3条件であり, その他のプラズマ照射条件は FT-IR 分析と同じであった.

結果及び考察

1) FT-IR 分析結果

未処理のNi基板を参照サンプルとして測定したプラズ マ照射時間が2分と20分のNi板の高感度赤外反射スペ クトルを図2に示す.3500 cm⁻¹付近にブロードな吸収バ ンド,ならびに730 cm⁻¹付近より低波数側に吸収の立ち上 がりを観測した.これらは、O-H 結合とNi-O 結合に由来 すると推察される⁴⁾.そして,水酸基(-OH)が導入された Ni表面の濡れ性は向上し,Ni-W めっきのつきまわりを改 善したと考えられる.また、プラズマ照射時間に対するO-H 結合の吸収ピークに顕著な変化が見られなかったこと から、2分間のプラズマ照射によりO-H 結合の導入量は飽 和したと考えられる.この結果は、2分以上のプラズマ照 射において,接触角が5°以下に収束する点と一致する.

図 2 プラズマ照射時間が 2 分と 20 分の Ni 板の高感度赤 外反射スペクトル

2) XPS 分析結果

図 3(a) に示すようにワイドスキャン測定では, Ni, O, F, C, N を観測した. そして, プラズマ照射時間の増加に 伴い, F1s ピーク強度が増加した. F はプラズマ装置の絶縁体に使われているテフロンから発生したと考えられる.

図 3(b)に示す Cls スペクトルでは、プラズマ照射により 285eV のピークが大きく減少した.このピークは炭化水素 に対応しており⁵)、プラズマ照射で導入した大気中の酸素

図 3 (a)Ni 板のワイドスキャン測定結果、(b)Ni 板の C1s スペクトル、(c)Ni 板の Ni2p スペクトル、(d) Ni 板の O1s スペクトル

から生じた酸素プラズマが Ni 板表面に吸着していた炭化 水素を分解し, Ni 板の親水化が進んだと考えられる^の.

図 3(c)に示す正規化した Ni2p スペクトルにおけるプラ ズマ照射前の Ni 板では,852.5eV 付近のピークである Ni(金属)が主成分であり,その左側にショルダーピークを 形成したブロード部分を伴う NiO⁷が一部存在すると考え られる. NiO は疎水性⁸⁾を示すため,未照射では Ni-W め っき膜が剥落し易かったと考えられる.そして,プラズマ 照射から生じた酸素プラズマによる酸化が進行し,NiO と Ni(金属)の大部分は親水性を示す Ni₂O₃⁹に変化し,Ni(金 属)のピークが低下したと考えられる.FT-IR 測定で Ni₂O₃ を構成する Ni-O 結合が検出されており,この推論の妥当 性を示している.そして,Ni 板の親水性の向上の原因の 一つとして,Ni 板表面が Ni(金属)と NiO から Ni₂O₃に変 化したことが考えられる.

図 3(d)に示す正規化した O1s スペクトルにおけるプラ ズマ照射前の Ni 板では,531.6eV と 529.9eV で 2 つのピ ークを検出した.結合エネルギーの値¹⁰⁾と図 3(c)から 531.6eV のピークは NiO であり,プラズマ照射により, NiO は更に酸化されて, Ni₂O₃に変化したと考えられる.

4. まとめ

FT-IR と XPS を用いて、プラズマ照射後の Ni 板の表面 を分析した.FT-IR の分析結果では、水酸基により Ni 板 の表面が親水化されたと考えられる.また、XPS の分析 結果では、酸素プラズマによる Ni 板表面の炭化水素の除 去と Ni 板表面が親水性を示す Ni₂O₃に変化したことの 2 点が Ni 板表面の親水性を変化させた一要因と考えられ る. そして, プラズマ照射による Ni 板表面の親水化が, Ni-W めっき膜のつきまわりを改善し, Ni-W めっき膜の 析出状態の改善に寄与したと考えられる.

【参考文献】

- 安井学,金子智,黒内正仁,伊藤寛明,荒井政大,電気 学会論文誌C(電子・情報・システム部門誌), 139(5),644(2019)
- M. Yasui, M. Kurouchi, S. Kaneko ; Isplasma2020, 10P3-33(2020)
- 安井学,長沼康弘,田中聡美,加藤千尋,黒内正仁,金子智,表面技術,72,716-718(2021)
- 4. Y.-L. T. Ngo, S. H. Hur ; Materials Research Bulletin, 84(10), 168(2016)
- 5. 伊東威安, 色材協会誌, 64, 396-403 (1991)
- 6. 江黒徹, 村田功, 大橋功, 前川修一郎, 吉成正雄, 日本 ロ腔インプラント学会誌, 24, 215(2011)
- A. Agrawal, H. R. Habibi, R. K. Agrawal, J. P. Cronin, D. M. Roberts, Thin Solid Films, 221, 239(1992)
- A. A. Jabbar, A. J. Haider, M. J. Haider, K. F. Al-azawi, Journal of Materials Research and Technology, 9(6), 15123(2020)
- 9. C. Negin, S. Ali, Q. Xie ; Petroleum, 2(4), 324(2016)
- 10.J. F. Moulder, W. F. Stickle, P. E.' Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p.231 (Perkin-Elmer Corp. Phys. Electron. Div. Pub. Ltd., 1992)

【外部発表】論文発表1件