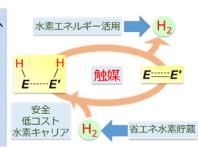


KISTEC 脱炭素化対策事業

貴金属フリー触媒の活用に立脚した水素貯蔵材料開発


「水素社会に向けたエネルギーキャリア開発プロジェクト」 プロジェクトリーダー「砂田祐輔(東京大学生産技術研究所)

水素・触媒・エネルギー

研究課題の目的や概要

水素は、低炭素社会の構築を実現するクリーンなエネルギーであり、 また多様な一次エネルギーから作り出せるため、資源・環境問題の無 い未来社会の実現を可能にするエネルギー源として最も有望です。

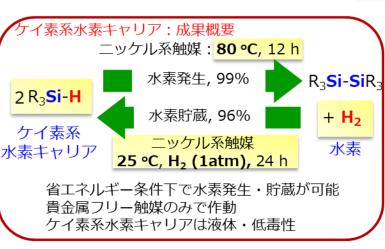
本研究では、安全かつ省エネルギーで作動する水素キャリアの開発 と、効率的に水素発生・貯蔵を可能にする触媒開発を行います。併せ て、これらの水素キャリア・触媒を活用し発生する水素ガスのエネル ギーとしての活用を指向した燃料電池の開発を行います。

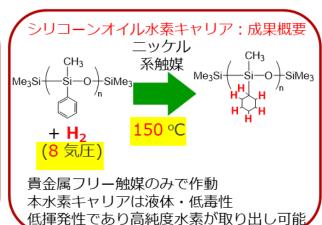
水素はクリーンな次世代エネルギー候補のひとつ

近年注目を集めている水素エネルギーキャリアの例 水素キャリ

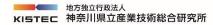
ニアを アとして活	用		素キャリアとす (イドライド法	る	
水素貯		(MCH)			
水表家度	水素加	対出に必要な			縣今

	水素密度 (kg·H₂/m³)	水素放出に必要な エネルギー (kJ/molH₂)	輸送	懸念 (安全性など)	
液化水素	70.8	0.899	-253℃以下		
圧縮水素 (35 MPa)	23.2	-	圧縮条件下	引火性 可燃性	5
圧縮水素 (70 MPa)	39.6	-	/工作的本门 [爆発性	
メチルシクロ ヘキサン(MCH)	47.3	67.5	常温・常圧 で液体として 輸送	引火性 生体毒性 揮発性	
アンモニア	121	30.6	常圧・-33℃, or 常温・8.5気圧	急性毒性 腐食性	


MCHは多量の水素を貯蔵、輸送性に優れるが、高エネルギーが必要、安全性も課題


本研究では下記2種の水素キャリア材料を独自に開発

研究目的:新しい化学的水素貯蔵技術の開発に向けて 1. Si, Geを活用した新しい水素キャリア材料の開発 2. 貴金属フリー触媒(主にFe or Ni触媒)の開発



今後の展望

触媒活性向上・キャリアの水素貯蔵量の向上を踏まえた実用性のある水素発生・貯蔵システム開発

KISTEC Innovation Hub2025

問い合わせ先

研究開発部研究推進課研究企画グループ rep-kenkyu@kistec.jp