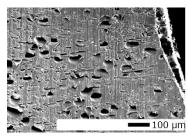


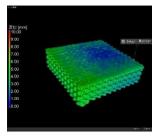
KISTECの試験設備を利用した 3Dプリンタ造形物評価の支援

太祐(情報・生産技術部 設計試作グループ) 岡崎

3Dプリント


3Dプリンタ造形物の評価手法

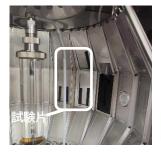
フィラー観察



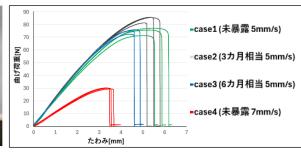
形状誤差解析

破壊モードの評価

 μm


mm

CM


3D造形物の品質評価をマルチスケールで評価する試験装置を設置しております。

試験事例

造形物の屋外設置を想定した、促進対候性試験による3D造形物の層間強度の評価

促進対候性試験

三点曲げ試験

促進耐候性試験による3D造形品の曲げ強度への影響

造形パラメータ	
造形材料	PLA
ノズルサイズ	1.2mm
LayerHeight	1.2mm
試験片	$80\text{mm} \times 10\text{mm} \times 4\text{mm}$
造形速度	5mm/s 7mm/s

試験条件	
放射照度	180W/m^2
BPT温度:	63°
槽内相対湿度	50%rh
試験時間:	118h(3ヶ月相当)/236h(6ヶ月相当)

促進耐候性試験で脆化によりたわみが減少したが、強度の傾向は不明確であった。また造形速度の 違いが強度へより大きく影響する結果であった。

今後の展開

3D造形物の評価提案

_{造形試作} 県内企業の技術向上、製品開発を支援いたします。

また3Dプリントに関わる造形試作・研究開発・情報発信にも対応いたします。お気軽にお問い合わせください。

Innovation Hub2025 KISTEC

問い合わせ先

情報・生産技術部