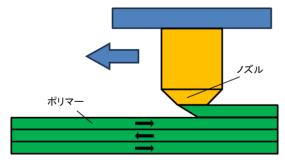


3Dプリンタ造形CFRPの電子線照射による特性改善

栄一(機械材料技術部 材料評価グループ) 三浦 太祐(情報生産技術部 設計試作グループ) 岡崎


3Dプリンタ、CFRP

背景

3Dプリンタ

3Dプリンタは金型が不要で、多品種少量生産や 複雑形状の短時間造形に適している。 特にFDM方式は低価格で普及しているが、 造形品の機械的性質が低く、主に試作品や 展示品用途に使われている。

強度を上げるため、短繊維を含有している CFRPのフィラメントもあるが積層面の影響で 脆いことが課題となっている。

FDM方式

目的:3Dプリンタで造形した短繊維CFRPの電子線照射による機械的性質の向上

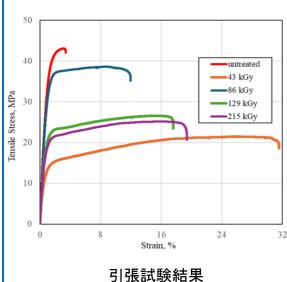
実験方法

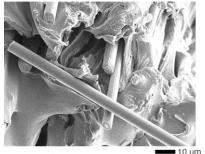
FDM方式の3Dプリンタでダンベル試験片を作製し、 4条件の電子線を照射した。

EB照射条件

43 kGy, 86 kGy, 129 kGy, 215 kGy

評価手法


引張試験


各電子線照射条件の応力ひずみ線図を ビデオ伸び計で測定

破断面観察

引張試験後の試料の破断面を 電子顕微鏡で観察

実験結果

untreated

SEM写真

43 kGy

電子線照射処理を行った造形品は未処理のものより引張 強さは低下したが、破断伸びは未処理時より増加し、 43 kGv照射時に約12倍になった。

未照射の破断面は炭素繊維と樹脂が剥離していたが、電 子線照射後は炭素繊維が樹脂と剥離していない、表面に 樹脂が残っていることが確認された。

KISTEC Innovation Hub2025

地方独立行政法人 KISTEC 神奈川県立産業技術総合研究所 問い合わせ先