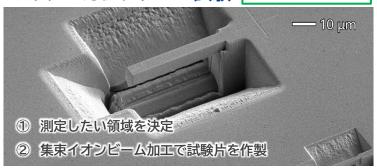
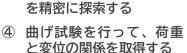

高橋 拓実(機械・材料技術部 材料物性グループ)

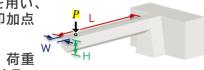
セラミックス、微小部機械的特性評価法

#### 背景

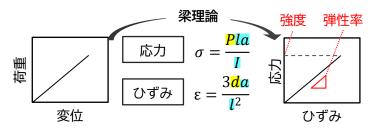

- ▶ セラミックスの信頼性の本質的な向上は、破壊の素過程を 解明・理解しなければ達成できない。
- ▶ セラミックスの破壊の素過程は、構成要素である結晶粒や 粒界の破壊現象である。
- ➢ 結晶粒や粒界の大きさに相当する微小領域の機械的特性を 直接評価する技術が求められる。



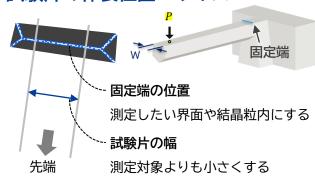

低温劣化したイットリア安定化ジルコニアの破壊


#### マイクロカンチレバー試験

国際標準化進行中




# ③ ナノインデンターを用い、 試験片先端の荷重印加点

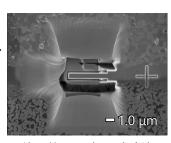





- ⑤ 梁理論を仮定し、荷重と変位を応力とひずみに変換
- ⑥ 破壊応力を曲げ強度、傾きを弾性率として評価

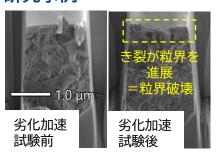


#### 試験片の作製位置・サイズ




試験片サイズ一覧

| サイズ | W/µm | L/μm | H/μm | 荷重点距離 / μm |
|-----|------|------|------|------------|
| XS  | 0.1  | 1    | 0.2  | 0.8        |
| S   | 0.3  | 3    | 0.5  | 2.5        |
| М   | 1.5  | 12   | 2.5  | 10         |
| L   | 5    | 40   | 8.3  | 33.3       |
| XL  | 10   | 80   | 16.7 | 66.7       |


#### 測定実績

- バルク体の結晶粒内、 粒界
- ▶ セラミックコーティング材(層内)
- 積層体の層内、界面
- > 多孔体の粒界



積層体の層内の試験片

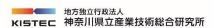
#### 研究事例 イットリア安定化ジルコニアの低温劣化現象



- 表面近傍の曲げ強度 が低下
- ▶ 劣化に伴い、試験片表面のき裂が粒界を 優先的に進展
- 粒界の機械的特性の 低下(弱化)を示唆

## 今後の展望

> 国際標準化


曲げ強度、破壊靭性評価

▶ 応用解析

電子後方散乱回折法(結晶方位⇔機械的特性)

透過型電子顕微鏡(ナノ構造⇔機械的特性)

### KISTEC Innovation Hub2025



#### 問い合わせ先

機械・材料技術部材料物性グループ TEL 046-236-1500